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omAbstra
t. A means of in
orporating soft linguisti
 
onstraints in a do
-ument image de
oding system is des
ribed. Do
ument image de
odingre
ognizes text by �nding a most probable path through a hypothesizedMarkov sour
e model for a given degraded do
ument image. The lin-guisti
 
onstraints are expressed by a sequential predi
tive probabilisti
language model. Sear
h is a

omplished by iteratively res
oring 
ompletepaths using 
onditional language model probability distributions of in-
reasing order, expanding state only as ne
essary. This approa
h resultsin a solution that is provably optimal with respe
t to the spe
i�ed sour
e,degradation, and language models. Simulation results are presented fora re
ognition system wherein the do
uments are one-dimensional 
or-rupted streams of Ameri
an Morse Code pulses. This simulation pre-serves the essential features and 
hallenges of text line de
oding in asimpli�ed setting that highlights the important algorithmi
 issues.1 Best-Path Sear
h in Do
ument Image De
odingDo
ument image de
oding (DID) [5, 6℄ is a method of text re
ognition in do
-ument images that is based on a 
ommuni
ations systems view of the do
u-ment 
omposition, printing, degradation, and s
anning pro
esses. Among theadvantages of DID are high re
ognition a

ura
y in situations where extensive
ustomization is allowable, the ability to re
ognize some higher-level stru
turealong with the text, and the ability to extend and improve the system within a
onsistent probabilisti
 framework. In the work on DID reported until now, thehigh re
ognition a

ura
y has been a
hieved despite a la
k of any prior spe
i�-
ation of whi
h re
ognized strings are linguisti
ally valid.In DID, do
ument images are modeled as having been produ
ed by a Markovsour
e (a probabilisti
 �nite-state ma
hine). The sour
e begins in a distinguishedstart state and terminates in a distinguished stop state. Ea
h transition 
ausesthe imaging of a 
hara
ter template (bitmap) on the page at a 
urrent 
ursorlo
ation, and advan
es that lo
ation in preparation for printing the next 
har-a
ter. The 
hara
ter template may be whitespa
e. Formally, ea
h transition inthe sour
e is assigned a four-tuple 
onsisting of: a 
hara
ter template, a two-dimensional displa
ement by whi
h to advan
e the 
ursor, the prior probability



of following the transition, and a string label. Every 
omplete path through thesour
e thus de�nes a do
ument image and an asso
iated trans
ription: the imageis the union of the bitmaps imaged on ea
h transition, and the trans
ription isthe 
on
atenation of the asso
iated string labels.For a given observed do
ument image, re
ognition involves �nding a 
ompletepath through the hypothesized Markov sour
e that best explains the observedimage. Spe
i�
ally, a 
omplete path is sought that is most probable 
onsideringthe entire image as eviden
e, where the probability is 
omputed on the basisof the prior probabilities of the transitions and the likelihoods of the asso
iatedimaged templates, allowing for possible 
orruption of the imaged templates byan assumed probabilisti
 degradation pro
ess. Dynami
 programming is used to�nd su
h a best path.1.1 Separable Markov Sour
es and Text Line De
odingIn many instan
es, the do
ument 
an be satisfa
torily modeled by a two-levelMarkov sour
e stru
ture in whi
h the top level 
hara
terizes and a

ounts for theverti
al layout of a do
ument page; the transitions at that level 
orrespond tosubsour
es des
ribing individual text lines [4℄. Su
h a sour
e is termed separable.Be
ause linguisti
 
onstraints bear most strongly on re
ognition within text lines,we fo
us on the de
oding of individual text lines. Thus, the problem of interestis to �nd a best 
omplete path through a subsour
e representing a text line.In the absen
e of any linguisti
 
onstraints, a suitable subsour
e for text linede
oding 
onsists of a start state, a single interior state, and a stop state. Theinterior state has one self-transition for ea
h 
hara
ter template. Control 
om-men
es in the start state with the 
ursor at a spe
i�ed horizontal lo
ation, thentransitions to the interior state and repeatedly self-transitions ba
k to that state,ea
h time imaging a 
hara
ter and advan
ing the 
ursor, and �nally terminatesin the stop state, again at a lo
ation that has been spe
i�ed in advan
e. Typi-
ally, the 
ursor lo
ations spe
i�ed for the start and stop states are the left- andright-most printable pixel lo
ations in the image, respe
tively. A 
omplete paththrough this subsour
e 
an be represented by a trellis diagram, wherein nodesrepresent horizontal pixel lo
ations along the baseline, and edges represent thetransitions that together make up the 
omplete path. Ea
h edge is labeled with as
ore that is the produ
t of the prior probability of the transition and the likeli-hood of the 
orresponding imaged template in the spatial lo
ation that the edgespans. Finding the highest-s
ore path 
an be a

omplished by a straightforwardappli
ation of dynami
 programming.2 In
orporating Linguisti
 Constraints in DIDAs it is des
ribed above, DID makes no use of prior knowledge about whi
h re
-ognized trans
riptions are more linguisti
ally valid than others; it simply 
hoosesthe trans
ription 
orresponding to a path with highest posterior probability. Itis desirable from the point of view of error rate to provide DID with a means



of preferring linguisti
ally more valid trans
riptions over less valid ones. Severalapproa
hes are possible. Con
eptually, the simplest is to modify the dynami
programming sear
h to provide a multipli
ity of high-probability paths ratherthan a single one, then sele
t among them on the basis of linguisti
 validity [9℄.Preliminary experiments following this approa
h reveal a potential for signi�-
ant redu
tion in re
ognition error rates in some 
ase, but only if the number ofretained paths is very large (on the order of 500 per text line) [8℄.In prin
iple, a more dire
t way of in
orporating linguisti
 
onstraints in DIDis by modifying the Markov sour
e model so that the states en
apsulate linguis-ti
 
ontext. We are primarily interested in soft linguisti
 
onstraints, whi
h 
anbe expressed probabilisti
ally within this linguisti
ally-expanded Markov sour
e.The main obsta
le to doing this in a dire
t way is that the requisite number ofstates grows exponentially in the length of the linguisti
 
ontexts being 
onsid-ered. In spee
h re
ognition, the potential exponential explosion of states (andhen
e 
andidate paths) is usually addressed by modifying the sear
h algorithmto explore only a small fra
tion of 
andidate paths, namely those deemed mostpromising as the sear
h unfolds. While this approa
h appears to be useful inpra
ti
e in �nding good trans
riptions, it provides no guarantee that the pathwith highest probability will be a
tually be found [2, Chapter 6℄.In this paper we 
onsider an alternative sear
h strategy that is guaranteedto �nd the most probable path, while in pra
ti
e avoiding exponential growthin spa
e and time 
omplexity. Linguisti
 
onstraints are expressed by a languagemodel, whi
h measures linguisti
 validity by assigning 
onditional probabilitiesto 
hara
ters in a sequen
e. The idea is to �nd a best 
andidate path usingupper bounds on the language model probabilities, then to res
ore this pathusing improved bounds or a
tual language model probabilities, repeating thesetwo steps until the best 
andidate path found has been s
ored only with a
tualprobabilities rather than upper bounds. The su

ess of this approa
h in avoidingexponential growth relies on the empiri
al fa
t that the likelihoods (templatemat
hes against the image) play a mu
h greater role in determining the bestpath than do the probabilisti
 linguisti
 
onstraints. In pra
ti
e, the linguisti

onstraints exert only a \tiebreaking" in
uen
e.2.1 Probabilisti
 Language ModelLinguisti
 validity 
an be measured by means of a probabilisti
 language model,whi
h in its full generality is a probability distribution over all �nite strings overa given alphabet. For use in do
ument image de
oding we restri
t the languagemodel to be fa
torable as a sequen
e of probability distributions over individual
hara
ters, ea
h 
onditioned on a subset of pre
eding 
hara
ters. Let the alpha-bet be A, and let v1; : : : ; vn denote a string with vi 2 A; i = 1; : : : ; n. Let � bea termination symbol, and let A0 = A [ f�g. We view strings as being formedby the following pro
ess. Chara
ters are generated sequentially a

ording to asequen
e of 
onditional probability distributionspi(vijv1; : : : ; vi�1) = pi(vij�i(v1; : : : ; vi�1)) (1)



where vi 2 A0, v1; : : : ; vi�1 2 A, i = 1; 2; : : :, and the fun
tion �i(v1; : : : ; vi�1)maps 
ontexts into equivalen
e 
lasses. The string terminates when the symbol �is generated; in terms of the Markov sour
e this 
orresponds to a transition intothe stop state. This is essentially a tree sour
e similar to the sour
e des
ribed in[7℄, but di�ers from it in its use of a termination symbol and in the fa
t that itindu
es a valid probability distribution over all �nite strings.For simpli
ity in this paper, we remove the dependen
e of p in (1) on i, andrestri
t �i(v1; : : : ; vi�1) to be of the form�i(v1; : : : ; vi�1) = � (v1; : : : ; vi�1) if i � N(vi�N+1; : : : ; vi�1) otherwise (2)for a �xed small integer N . With these restri
tions, (1) is referred to as a 
hara
-ter N-gram language model, hereinafter referred to simply as an N -gram model:pi(vijv1; : : : ; vi�1) = p(vijvi�Ni+1; : : : ; vi�1) (3)where Ni = minfi; Ng. Although the sear
h te
hnique to be des
ribed hereinremains pra
ti
al using a 
lass of language models more general thanN -gram,N -grams are widely used and are fairly e�e
tive in 
apturing important statisti
alregularity in natural language strings, so that mu
h of the potential improvementin re
ognition a

ura
y a

ruing from the use of arbitrarily 
omplex languagemodels is preserved under this restri
tion, and mu
h is gained in the way of
larity of exposition.For a �xed N -gram, we de�ne a sequen
e of auxiliary fun
tions q0; : : : ; qNi�1as qk(vijvi�k ; : : : ; vi�1) = maxvi�Ni+1;:::;vi�k�1 p(vijvi�Ni+1; : : : ; vi�1) (4)whi
h for ea
h k provides an upper bound on the probability that 
an be assignedby the N -gram to vi when immediately pre
eded by (vi�k ; : : : ; vi�1). For exam-ple, q0 spe
i�es the maximum probability that 
an be assigned by the model tovi in any 
ontext, while at the other extreme, qN�1 is simply another name forp. Note that for any �xed string se
tion (vi�Ni+1; : : : ; vi), qk is nonin
reasing ink.3 In
orporating an N-gram Language Model inBest-Path Sear
hThe posterior probability of a 
omplete path through the Markov sour
e 
anbe expressed as the produ
t of two fa
tors: the likelihood of the path giventhe observed image, and the prior language-model probability assigned to theasso
iated trans
ription. From the point of view of minimizing error rate on agiven do
ument image, we wish to �nd a maximum posterior probability (MAP)
omplete path [6℄ in a pra
ti
able manner. Inspired by a te
hnique for redu
ing
omputations in standard DID [4℄, we propose �nding a MAP path by iteratively



re�ning 
andidate paths, ea
h time using improved upper bounds on linguisti-
ally weighted edge s
ores. However, departing from [4℄, we apply the sear
hwithin text lines, use a sequen
e of upper bound fun
tions derived from a lan-guage model, and in
ur an expansion of state on ea
h iteration. If the numberof iterations ne
essary for 
onvergen
e is small, as is expe
ted when the imagesare relatively 
lean, then the expansion will not be prohibitive.3.1 Iterated Complete-Path Sear
h Algorithm using N-gramsWe assume an N -gram language model with the fun
tions p and fq0; : : : ; qNi�1gas de�ned above. Initially, a standard DID trellis is 
onstru
ted as des
ribed inSe
tion 1.1, ex
ept that the s
ore on ea
h edge is now the produ
t of the tem-plate likelihood and the un
onditional upper bound q0 on the language modelprobability assigned to the 
orresponding 
hara
ter label. An initial best 
andi-date path �(0) is found by dynami
 programming in the usual way. The followingtwo steps are then iterated:1. For ea
h non-maximal node along the 
urrent 
andidate best path �(j), a newnode 
orresponding to the same spatial lo
ation is 
reated, and a 
ontextlabel is asso
iated with the new node 
orresponding to the trans
riptionof the longest unambiguous path segment leading to it. A node is deemedmaximal if its asso
iated 
ontext label is of length Ni � 1.2. A new 
andidate best path �(j+1) is found in the expanded graph by re-stri
ting the dynami
 programming sear
h to 
onsider only those nodes inea
h spatial lo
ation that have the most spe
i�
 
ontext 
onsistent withpath history. Edge s
ores used in the sear
h are the produ
t of the templatelikelihood and highest-order upper bound q (or probability p, in the 
ase ofa maximal originating node) 
onsistent with the originating node's 
ontextlabel.The sear
h terminates when all nodes along �(j) in step (1) are found to bemaximal; su
h a path is provably MAP with respe
t to the language model andtemplate likelihood s
ores.4 Simulation on a Demonstration ProblemAppli
ation of the sear
h te
hnique des
ribed in Se
tion 3 to text re
ognition ismost easily understood and analyzed in terms of a one-dimensional demonstra-tion problem. The essential ingredients are a message sour
e, a signaling s
hemethat involves the 
on
atenation of variable-width templates, and a degradationpro
ess whereby the 
on
atenated templates are 
orrupted to yield the observedwaveform to be de
oded.



Table 1. Ameri
an Morse Code.Letter Codeword Letter Codeword Letter Codeword Letter CodewordA �- K -�- U ��- 5 �����B -��� L �-�� V ���- 6 -����C -�-� M -- W �-- 7 --���D -�� N -� X -��- 8 ---��E � O --- Y -�-- 9 ----�F ��-� P �--� Z --�� 0 -----G --� Q --�- 1 �---- � �-�-�-H ���� R �-� 2 ��--- , --��--I �� S ��� 3 ���-- ? ��--��J �--- T - 4 ����-4.1 Demonstration using Ameri
an Morse CodeSpe
i�
ally, we take the 
hara
ter templates to be dis
rete waveform segmentsobtained from the 
odewords of Ameri
an Morse Code (Table 1), with ea
h `�'repla
ed by the numeri
 sequen
e (2; 3; 2; 1) and ea
h `-' repla
ed by (2; 3; 3; 2; 1).A letter spa
e 
hara
ter is represented as (1; 1; 1; 1; 1). When a string is \typeset"into a waveform, adja
ent templates are separated by the spa
er element (1). Forexample, the string `THE' maps to the waveform(2,3,3,2,1,1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2,1,1,2,3,2,1)After the waveform is 
reated from the original text string, it is degradedby passing it through an additive white Gaussian noise 
hannel. Spe
i�
ally,pseudorandom noise is added to ea
h element in the waveform, where the noiseis independent and normally distributed with mean zero and varian
e �2.Constru
tion of the de
oding trellis requires that the spatial lo
ations 
orre-sponding to the start and stop states be spe
i�ed. In a
tual pra
ti
e these wouldbe set to the left and right extremal positions, respe
tively, at whi
h a template
an be imaged. To fa
ilitate syn
hronization, a spe
ial linguisti
ally inert single-spa
e template would be introdu
ed into the set of 
hara
ter templates, andassigned a probability suÆ
iently small to dis
ourage its gratuitous insertion.When 
onstru
ting and mat
hing linguisti
 
onditioning 
ontexts, all instan
esof this single-spa
e template would be ignored. For simpli
ity of implementa-tion, a single-spa
e template is not used in the work reported here; instead, it isassumed that the true start and stop positions are known exa
tly in advan
e.The body of text sele
ted for preliminary experiments is an ele
troni
 versionof Lewis Carroll's Through the Looking Glass [1℄, with all 
hara
ters mapped toupper 
ase, and only those symbols listed in Table 1 along with newlines andspa
es retained. Blank lines are omitted, and the remaining 3,118 lines of textare divided into two equal-size portions: a training segment, 
onsisting of theeven-numbered lines, and a test portion, 
onsisting of the odd-numbered lines.



4.2 Implementation of the N-gramIn the present study, an N -gram language model is implemented using a trie.Spe
i�
ally, an Ni-long window is displa
ed sequentially from left to right alongthe training text, terminating alternately at every position in the text. At ea
hposition, 
hara
ters in the window are s
anned from the left, and the trie is de-s
ended (or grown, as ne
essary) re
ursively downwards, in
rementing the 
ountof ea
h node en
ountered. The leaf 
ounts are transformed into the requisite N -gram 
onditional probability estimates by adding a smoothing fa
tor � to ea
h,then normalizing.Upper bounds are stored in the same trie. This is possible be
ause of themanner in whi
h training is done. Spe
i�
ally, by sliding the 
ontext windowexhaustively along the training text, it is ensured that for every suÆx of a pathfrom root to leaf, there exists a node in the trie that 
an be rea
hed by des
endingthat path-suÆx from the root. This allows the upper bounds of order k to bere
orded at the level-k nodes of the trie; in pra
ti
e these are obtained by makinga se
ond pass through the training data using the probabilities estimated on the�rst pass.Now 
onsider applying the trained language model to s
ore new data. Whilesmoothing allows valid 
onditional probabilities and upper bounds to be assignedto 
hara
ters in a given 
ontext that were missing in the training data, it doesnot help when the required 
ontext node itself has a 
ount so low as to makethe probability estimate unreliable, or worse, when the 
ontext node is missingfrom the trie entirely. In this not-so-un
ommon situation, \ba
king o�" is used:suÆxes of the desired 
ontext of de
reasing length are tried until the resulting
ontext node has a 
ount that is larger than a spe
i�ed threshold value m. Insu
h 
ases, the resulting 
ontext nodes are 
onsidered to be of maximal orderwhen testing for termination of the iterated best-path sear
h.4.3 N-gram ParametersThe existen
e of a 
ount-based ba
king-o� strategy mitigates the data sparsityproblem, and allows N to be larger than might otherwise be warranted [3℄.Several 
ombinations of values of N , �, and the 
ount threshold m were tried intraining the language model on the training data, and the resulting log-likelihoodvalues on the test data noted. Suitable 
rossvalidated parameter values were thusfound to be N = 4, � = 0:025, and m = 5, resulting in an estimated 
oding 
oston the test data of 2:24 bits per 
hara
ter.4.4 Preliminary ResultsDo
ument Image De
oding was implemented for the Morse Code problem usingdata stru
tures suitable for implementation of the sear
h method des
ribed inSe
tion 3. Errorful trans
riptions were obtained for a variety of values of the
hannel noise intensity parameter �, ranging from 0:05 to 0:50. The resultingtrans
ription error rates for line-by-line de
oding for the �rst fourteen lines of



the test data, as measured by edit distan
e to the original text, is shown inFigure 1. For 
omparison, the error rates using the Viterbi algorithm without a
ontext-dependent language model are also shown. From the graph it is evidentthat in
orporating the language model via the proposed sear
h algorithm signif-i
antly redu
es error rates in this example. One of the 
hara
teristi
s of the pro-
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Fig. 1. Per-
hara
ter trans
ription error rates versus 
hannel noise intensity � for theproposed algorithm, as measured by edit distan
e, using unit 
osts for insertions, dele-tions, and substitutions. Also shown is the 
orresponding 
urve for the sto
k Viterbialgorithm sans language model.posed sear
h algorithm is that its spa
e- and time- 
omplexities depend stronglyon the degree to whi
h the template likelihood s
ores dominate the overall paths
ores. In the low-noise 
ase, the template likelihoods overwhelm the languagemodel s
ores, so that the algorithm 
onverges relatively qui
kly to a path foundearly on in the sear
h, with little expansion of state beyond the starting trellis.At the other (high-noise) extreme, the templates provide very little information,and the de
oder must essentially \hallu
inate" a high-probability string of therequired length using the language model alone. This latter task is essentiallyexponentially 
omplex in the order of the language model, so we expe
t a 
om-putational explosion as the degradation level in
reases. We 
an see this e�e
tin Figure 2, where the number of iterations required by the proposed algorithmis plotted against noise level. The 
orresponding spa
e-
omplexity 
urve shownin Figure 3. Finally, in Figure 4 we present the 
umulative raw path s
ores forthe proposed algorithm, Viterbi sans language model, and ground truth. Pathsfound by the proposed algorithm 
onsistently outs
ore Viterbi and mat
h or
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onvergen
e, versus 
hannel noise. Based on the same simulation run as Figure 1.outs
ore ground truth, whi
h is expe
ted as the algorithm is guaranteed to �nda path with the highest s
ore. When the 
omponents of the overall s
ore wereexamined, it was found that the Viterbi algorithm generally results in higherlikelihoods, while the proposed algorithm tends to yield higher language-models
ores. Again, these �ndings are 
onsistent with expe
tation, 
onsidering whatea
h algorithm optimizes.5 Con
lusionAn iterative te
hnique for in
orporating a 
lass of 
ausal, sequentially predi
tiveprobabilisti
 language models into the do
ument image de
oding framework hasbeen des
ribed in detail. Its two theoreti
al advantages over standard approa
hesare that is integrated dire
tly into the best-path sear
h algorithm, and it resultsin a truly optimal de
oding with respe
t to the language and degradation models.Complexity is 
ontrolled by expanding state only on an as-needed basis, so thatin the usual low-noise 
ase where the template likelihoods dominate the paths
ores, only a modest expansion in spa
e- and time-
omplexity o

urs. However,in 
ases of moderate to severe degradation, the 
omputational 
omplexity of theproposed algorithm be
omes prohibitive. Ultimately, the 
ause of this behavioris the algorithm's insisten
e on �nding a \best" path rather than just a \good"path, the latter whi
h may well be suÆ
ient in pra
ti
e.Preliminary results on a demonstration problem involving re
ognition of aone-dimensional Morse Code signal indi
ate a potential for signi�
ant redu
tion
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orporating even a modest language model into DID using theproposed algorithm. The next step in exploring the nature and possible uses ofthis algorithm will be a more extensive simulation on a
tual do
ument images,taking into a

ount the syn
hronization issues alluded to in Se
tion 4.1.It is still an open question whether the proposed algorithm 
an o�er 
learpra
ti
al advantages over alternative te
hniques that �nd only approximate bestpaths. More immediately 
lear is the usefulness of the proposed algorithm as aresear
h tool. At moderate 
omputational 
ost, it provides a means of �ndingan otherwise elusive true-best path when a non-trivial language model is inthe system. This provides useful 
alibration information when evaluating theperforman
e of alternative, perhaps approximate sear
h strategies.6 A
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