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Abstract. A means of incorporating soft linguistic constraints in a doc-
ument image decoding system is described. Document image decoding
recognizes text by finding a most probable path through a hypothesized
Markov source model for a given degraded document image. The lin-
guistic constraints are expressed by a sequential predictive probabilistic
language model. Search is accomplished by iteratively rescoring complete
paths using conditional language model probability distributions of in-
creasing order, expanding state only as necessary. This approach results
in a solution that is provably optimal with respect to the specified source,
degradation, and language models. Simulation results are presented for
a recognition system wherein the documents are one-dimensional cor-
rupted streams of American Morse Code pulses. This simulation pre-
serves the essential features and challenges of text line decoding in a
simplified setting that highlights the important algorithmic issues.

1 Best-Path Search in Document Image Decoding

Document image decoding (DID) [5,6] is a method of text recognition in doc-
ument images that is based on a communications systems view of the docu-
ment composition, printing, degradation, and scanning processes. Among the
advantages of DID are high recognition accuracy in situations where extensive
customization is allowable, the ability to recognize some higher-level structure
along with the text, and the ability to extend and improve the system within a
consistent probabilistic framework. In the work on DID reported until now, the
high recognition accuracy has been achieved despite a lack of any prior specifi-
cation of which recognized strings are linguistically valid.

In DID, document images are modeled as having been produced by a Markov
source (a probabilistic finite-state machine). The source begins in a distinguished
start state and terminates in a distinguished stop state. Each transition causes
the imaging of a character template (bitmap) on the page at a current cursor
location, and advances that location in preparation for printing the next char-
acter. The character template may be whitespace. Formally, each transition in
the source is assigned a four-tuple consisting of: a character template, a two-
dimensional displacement by which to advance the cursor, the prior probability



of following the transition, and a string label. Every complete path through the
source thus defines a document image and an associated transcription: the image
is the union of the bitmaps imaged on each transition, and the transcription is
the concatenation of the associated string labels.

For a given observed document image, recognition involves finding a complete
path through the hypothesized Markov source that best explains the observed
image. Specifically, a complete path is sought that is most probable considering
the entire image as evidence, where the probability is computed on the basis
of the prior probabilities of the transitions and the likelihoods of the associated
imaged templates, allowing for possible corruption of the imaged templates by
an assumed probabilistic degradation process. Dynamic programming is used to
find such a best path.

1.1 Separable Markov Sources and Text Line Decoding

In many instances, the document can be satisfactorily modeled by a two-level
Markov source structure in which the top level characterizes and accounts for the
vertical layout of a document page; the transitions at that level correspond to
subsources describing individual text lines [4]. Such a source is termed separable.
Because linguistic constraints bear most strongly on recognition within text lines,
we focus on the decoding of individual text lines. Thus, the problem of interest
is to find a best complete path through a subsource representing a text line.

In the absence of any linguistic constraints, a suitable subsource for text line
decoding consists of a start state, a single interior state, and a stop state. The
interior state has one self-transition for each character template. Control com-
mences in the start state with the cursor at a specified horizontal location, then
transitions to the interior state and repeatedly self-transitions back to that state,
each time imaging a character and advancing the cursor, and finally terminates
in the stop state, again at a location that has been specified in advance. Typi-
cally, the cursor locations specified for the start and stop states are the left- and
right-most printable pixel locations in the image, respectively. A complete path
through this subsource can be represented by a trellis diagram, wherein nodes
represent horizontal pixel locations along the baseline, and edges represent the
transitions that together make up the complete path. Each edge is labeled with a
score that is the product of the prior probability of the transition and the likeli-
hood of the corresponding imaged template in the spatial location that the edge
spans. Finding the highest-score path can be accomplished by a straightforward
application of dynamic programming.

2 Incorporating Linguistic Constraints in DID

As it is described above, DID makes no use of prior knowledge about which rec-
ognized transcriptions are more linguistically valid than others; it simply chooses
the transcription corresponding to a path with highest posterior probability. It
is desirable from the point of view of error rate to provide DID with a means



of preferring linguistically more valid transcriptions over less valid ones. Several
approaches are possible. Conceptually, the simplest is to modify the dynamic
programming search to provide a multiplicity of high-probability paths rather
than a single one, then select among them on the basis of linguistic validity [9].
Preliminary experiments following this approach reveal a potential for signifi-
cant reduction in recognition error rates in some case, but only if the number of
retained paths is very large (on the order of 500 per text line) [8].

In principle, a more direct way of incorporating linguistic constraints in DID
is by modifying the Markov source model so that the states encapsulate linguis-
tic context. We are primarily interested in soft linguistic constraints, which can
be expressed probabilistically within this linguistically-expanded Markov source.
The main obstacle to doing this in a direct way is that the requisite number of
states grows exponentially in the length of the linguistic contexts being consid-
ered. In speech recognition, the potential exponential explosion of states (and
hence candidate paths) is usually addressed by modifying the search algorithm
to explore only a small fraction of candidate paths, namely those deemed most
promising as the search unfolds. While this approach appears to be useful in
practice in finding good transcriptions, it provides no guarantee that the path
with highest probability will be actually be found [2, Chapter 6].

In this paper we consider an alternative search strategy that is guaranteed
to find the most probable path, while in practice avoiding exponential growth
in space and time complexity. Linguistic constraints are expressed by a language
model, which measures linguistic validity by assigning conditional probabilities
to characters in a sequence. The idea is to find a best candidate path using
upper bounds on the language model probabilities, then to rescore this path
using improved bounds or actual language model probabilities, repeating these
two steps until the best candidate path found has been scored only with actual
probabilities rather than upper bounds. The success of this approach in avoiding
exponential growth relies on the empirical fact that the likelihoods (template
matches against the image) play a much greater role in determining the best
path than do the probabilistic linguistic constraints. In practice, the linguistic
constraints exert only a “tiebreaking” influence.

2.1 Probabilistic Language Model

Linguistic validity can be measured by means of a probabilistic language model,
which in its full generality is a probability distribution over all finite strings over
a given alphabet. For use in document image decoding we restrict the language
model to be factorable as a sequence of probability distributions over individual
characters, each conditioned on a subset of preceding characters. Let the alpha-
bet be A, and let vy, ...,v, denote a string with v; € A,i = 1,...,n. Let 7 be
a termination symbol, and let A" = AU {r}. We view strings as being formed
by the following process. Characters are generated sequentially according to a
sequence of conditional probability distributions

pi(vilve, ... vim1) = pi(vilgi(v1, ..., viz1)) (1)



where v; € A, v1,...,v;-1 € A, i =1,2,..., and the function ¢;(vy,...,v;_1)
maps contexts into equivalence classes. The string terminates when the symbol 7
is generated; in terms of the Markov source this corresponds to a transition into
the stop state. This is essentially a tree source similar to the source described in
[7], but differs from it in its use of a termination symbol and in the fact that it
induces a valid probability distribution over all finite strings.

For simplicity in this paper, we remove the dependence of p in (1) on i, and

restrict ¢;(vy,...,v;_1) to be of the form
; . — (Ula"':vifl) leSN
bi(vi,.. ., vil1) = { (Ui No1s . vi 1) otherwise (2)

for a fixed small integer N. With these restrictions, (1) is referred to as a charac-
ter N-gram language model, hereinafter referred to simply as an N-gram model:

pi(vilvy, ..., vic1) = p(VilvieN 415 Vi) (3)

where N; = min{i, N}. Although the search technique to be described herein
remains practical using a class of language models more general than N-gram, N-
grams are widely used and are fairly effective in capturing important statistical
regularity in natural language strings, so that much of the potential improvement
in recognition accuracy accruing from the use of arbitrarily complex language
models is preserved under this restriction, and much is gained in the way of
clarity of exposition.

For a fixed N-gram, we define a sequence of auxiliary functions qo, ..., qn,_1
as

Tk (Vilvi gy, 01) = max PVi|Vi—N; 1,5+, Vi1) (4)
Vi—N;4+1y--:Vi—k—1

which for each k provides an upper bound on the probability that can be assigned

by the N-gram to v; when immediately preceded by (vi—g,...,v;—1). For exam-

ple, go specifies the maximum probability that can be assigned by the model to

v; in any context, while at the other extreme, gy _1 is simply another name for

p. Note that for any fixed string section (v;—n,+1,-..,%i), gk 1S nonincreasing in

k.

3 Incorporating an N-gram Language Model in
Best-Path Search

The posterior probability of a complete path through the Markov source can
be expressed as the product of two factors: the likelihood of the path given
the observed image, and the prior language-model probability assigned to the
associated transcription. From the point of view of minimizing error rate on a
given document image, we wish to find a maximum posterior probability (MAP)
complete path [6] in a practicable manner. Inspired by a technique for reducing
computations in standard DID [4], we propose finding a MAP path by iteratively



refining candidate paths, each time using improved upper bounds on linguisti-
cally weighted edge scores. However, departing from [4], we apply the search
within text lines, use a sequence of upper bound functions derived from a lan-
guage model, and incur an expansion of state on each iteration. If the number
of iterations necessary for convergence is small, as is expected when the images
are relatively clean, then the expansion will not be prohibitive.

3.1 Iterated Complete-Path Search Algorithm using N-grams

We assume an N-gram language model with the functions p and {qo,...,qn,-1}
as defined above. Initially, a standard DID trellis is constructed as described in
Section 1.1, except that the score on each edge is now the product of the tem-
plate likelihood and the unconditional upper bound gg on the language model
probability assigned to the corresponding character label. An initial best candi-
date path 7(9 is found by dynamic programming in the usual way. The following
two steps are then iterated:

1. For each non-mazimal node along the current candidate best path 7(/), a new
node corresponding to the same spatial location is created, and a context
label is associated with the new node corresponding to the transcription
of the longest unambiguous path segment leading to it. A node is deemed
mazimal if its associated context label is of length N; — 1.

2. A new candidate best path 7U*1 is found in the expanded graph by re-
stricting the dynamic programming search to consider only those nodes in
each spatial location that have the most specific context consistent with
path history. Edge scores used in the search are the product of the template
likelihood and highest-order upper bound ¢ (or probability p, in the case of
a maximal originating node) consistent with the originating node’s context
label.

The search terminates when all nodes along 7(9) in step (1) are found to be
maximal; such a path is provably MAP with respect to the language model and
template likelihood scores.

4 Simulation on a Demonstration Problem

Application of the search technique described in Section 3 to text recognition is
most easily understood and analyzed in terms of a one-dimensional demonstra-
tion problem. The essential ingredients are a message source, a signaling scheme
that involves the concatenation of variable-width templates, and a degradation
process whereby the concatenated templates are corrupted to yield the observed
waveform to be decoded.



Table 1. American Morse Code.

Letter Codeword Letter Codeword Letter Codeword Letter Codeword

A - K - U - 5 -

- L - AV - 6 -
C - M - W 7 -
D - N - X - CJ—
E 0 - Y - J—
F oo P z - 0 —
G - Q - 1 e
H R - 2 - R
I S 3 s —
I T - 4 -

4.1 Demonstration using American Morse Code

Specifically, we take the character templates to be discrete waveform segments
obtained from the codewords of American Morse Code (Table 1), with each ‘-’
replaced by the numeric sequence (2, 3,2, 1) and each ‘-’ replaced by (2, 3,3,2,1).
A letter space character is represented as (1,1,1,1,1). When a string is “typeset”
into a waveform, adjacent templates are separated by the spacer element (1). For
example, the string ‘THE’ maps to the waveform

(2,3,3,2,1,1,2,3,21,2.3,2,1,2.3,21,23.2,1,1,23,2.1)

After the waveform is created from the original text string, it is degraded
by passing it through an additive white Gaussian noise channel. Specifically,
pseudorandom noise is added to each element in the waveform, where the noise
is independent and normally distributed with mean zero and variance o2.

Construction of the decoding trellis requires that the spatial locations corre-
sponding to the start and stop states be specified. In actual practice these would
be set to the left and right extremal positions, respectively, at which a template
can be imaged. To facilitate synchronization, a special linguistically inert single-
space template would be introduced into the set of character templates, and
assigned a probability sufficiently small to discourage its gratuitous insertion.
When constructing and matching linguistic conditioning contexts, all instances
of this single-space template would be ignored. For simplicity of implementa-
tion, a single-space template is not used in the work reported here; instead, it is
assumed that the true start and stop positions are known exactly in advance.

The body of text selected for preliminary experiments is an electronic version
of Lewis Carroll’s Through the Looking Glass [1], with all characters mapped to
upper case, and only those symbols listed in Table 1 along with newlines and
spaces retained. Blank lines are omitted, and the remaining 3,118 lines of text
are divided into two equal-size portions: a training segment, consisting of the
even-numbered lines, and a test portion, consisting of the odd-numbered lines.



4.2 Implementation of the N-gram

In the present study, an N-gram language model is implemented using a trie.
Specifically, an N;-long window is displaced sequentially from left to right along
the training text, terminating alternately at every position in the text. At each
position, characters in the window are scanned from the left, and the trie is de-
scended (or grown, as necessary) recursively downwards, incrementing the count
of each node encountered. The leaf counts are transformed into the requisite N-
gram conditional probability estimates by adding a smoothing factor a to each,
then normalizing.

Upper bounds are stored in the same trie. This is possible because of the
manner in which training is done. Specifically, by sliding the context window
exhaustively along the training text, it is ensured that for every suffix of a path
from root to leaf, there exists a node in the trie that can be reached by descending
that path-suffix from the root. This allows the upper bounds of order k to be
recorded at the level-k nodes of the trie; in practice these are obtained by making
a second pass through the training data using the probabilities estimated on the
first pass.

Now consider applying the trained language model to score new data. While
smoothing allows valid conditional probabilities and upper bounds to be assigned
to characters in a given context that were missing in the training data, it does
not help when the required context node itself has a count so low as to make
the probability estimate unreliable, or worse, when the context node is missing
from the trie entirely. In this not-so-uncommon situation, “backing off” is used:
suffixes of the desired context of decreasing length are tried until the resulting
context node has a count that is larger than a specified threshold value m. In
such cases, the resulting context nodes are considered to be of maximal order
when testing for termination of the iterated best-path search.

4.3 N-gram Parameters

The existence of a count-based backing-off strategy mitigates the data sparsity
problem, and allows N to be larger than might otherwise be warranted [3].
Several combinations of values of N, a;, and the count threshold m were tried in
training the language model on the training data, and the resulting log-likelihood
values on the test data noted. Suitable crossvalidated parameter values were thus
found to be N =4, a = 0.025, and m = 5, resulting in an estimated coding cost
on the test data of 2.24 bits per character.

4.4 Preliminary Results

Document Image Decoding was implemented for the Morse Code problem using
data structures suitable for implementation of the search method described in
Section 3. Errorful transcriptions were obtained for a variety of values of the
channel noise intensity parameter o, ranging from 0.05 to 0.50. The resulting
transcription error rates for line-by-line decoding for the first fourteen lines of



the test data, as measured by edit distance to the original text, is shown in
Figure 1. For comparison, the error rates using the Viterbi algorithm without a
context-dependent language model are also shown. From the graph it is evident
that incorporating the language model via the proposed search algorithm signif-
icantly reduces error rates in this example. One of the characteristics of the pro-
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Fig. 1. Per-character transcription error rates versus channel noise intensity o for the
proposed algorithm, as measured by edit distance, using unit costs for insertions, dele-
tions, and substitutions. Also shown is the corresponding curve for the stock Viterbi
algorithm sans language model.

posed search algorithm is that its space- and time- complexities depend strongly
on the degree to which the template likelihood scores dominate the overall path
scores. In the low-noise case, the template likelihoods overwhelm the language
model scores, so that the algorithm converges relatively quickly to a path found
early on in the search, with little expansion of state beyond the starting trellis.
At the other (high-noise) extreme, the templates provide very little information,
and the decoder must essentially “hallucinate” a high-probability string of the
required length using the language model alone. This latter task is essentially
exponentially complex in the order of the language model, so we expect a com-
putational explosion as the degradation level increases. We can see this effect
in Figure 2, where the number of iterations required by the proposed algorithm
is plotted against noise level. The corresponding space-complexity curve shown
in Figure 3. Finally, in Figure 4 we present the cumulative raw path scores for
the proposed algorithm, Viterbi sans language model, and ground truth. Paths
found by the proposed algorithm consistently outscore Viterbi and match or
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Fig. 2. Average per-Line number of iterations required by the proposed algorithm for
convergence, versus channel noise. Based on the same simulation run as Figure 1.

outscore ground truth, which is expected as the algorithm is guaranteed to find
a path with the highest score. When the components of the overall score were
examined, it was found that the Viterbi algorithm generally results in higher
likelihoods, while the proposed algorithm tends to yield higher language-model
scores. Again, these findings are consistent with expectation, considering what
each algorithm optimizes.

5 Conclusion

An iterative technique for incorporating a class of causal, sequentially predictive
probabilistic language models into the document image decoding framework has
been described in detail. Its two theoretical advantages over standard approaches
are that is integrated directly into the best-path search algorithm, and it results
in a truly optimal decoding with respect to the language and degradation models.
Complexity is controlled by expanding state only on an as-needed basis, so that
in the usual low-noise case where the template likelihoods dominate the path
scores, only a modest expansion in space- and time-complexity occurs. However,
in cases of moderate to severe degradation, the computational complexity of the
proposed algorithm becomes prohibitive. Ultimately, the cause of this behavior
is the algorithm’s insistence on finding a “best” path rather than just a “good”
path, the latter which may well be sufficient in practice.

Preliminary results on a demonstration problem involving recognition of a
one-dimensional Morse Code signal indicate a potential for significant reduction
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Fig. 3. Space-complexity (average per-Line number of graph nodes) required by the
algorithm versus channel noise. The baseline corresponds to the size of the starting
trellis.

in error rates by incorporating even a modest language model into DID using the
proposed algorithm. The next step in exploring the nature and possible uses of
this algorithm will be a more extensive simulation on actual document images,
taking into account the synchronization issues alluded to in Section 4.1.

It is still an open question whether the proposed algorithm can offer clear
practical advantages over alternative techniques that find only approximate best
paths. More immediately clear is the usefulness of the proposed algorithm as a
research tool. At moderate computational cost, it provides a means of finding
an otherwise elusive true-best path when a non-trivial language model is in
the system. This provides useful calibration information when evaluating the
performance of alternative, perhaps approximate search strategies.
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