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Abstract

Themorphologicabperation®f a hit-misstransformopeningandclosingaregeneralized
in a numberof ways. The new operationshave beenappliedto a variety of binary image
analysisproblemsthatinvolve patterndetectionandreconstructionGeneralizepeningsare
developedby replacingerosionswith hit-miss transforms. Thesenen openingsare shavn
to be anti-extensie, idempotentand centerindependent Similarly generalizedtlosingsare
developedandrelatedto openingsby duality. Additionally, the hit-misstransformis further
generalizedy replacingthe erosionswith blur andrankordertransformsjn orderto improve
therobustnes®f patternmatchesThesetof invariancepropertief thesenaw transformscan
bewidenedby forming generalizedpeningsrom them.

1 Introduction

The morphologicalopeningand closing operationssatisfy several elegantand useful properties,
suchascenterindependencadempotenceand anti-extensvity or extensvity, in additionto the
generalmorphologicalpropertiesof translationinvarianceandincreasing However, becaus¢hey

arerestrictedto only “hits” and“don’t-cares”in the structuringelemeniabbreviatedasSE), they

are severely limited in generality The hit-misstransform(HMT), on the other hand,is an ex-

tremelygenerapattern-matchingperation It is ageneralizatiorof theerosionto SEsthatspecify
“misses”’aswell as“hits”, butit lackseventheincreasingoropertyof the erosion.

The openingoperationis an erosionfollowed by a dilation with the sameSE. It is center
independenibecaus¢heimagetranslationgor theerosionanddilation, specifiedoy the SE,arein
oppositedirections(seedefinitionsin (1) and(2)). The openingis idempotenbecauseachpixel
remainingaftertheerosionrepresentsa patternmatchof the SE elemento theoriginalimage,and
is subsequentigilatedby the SE to reproducesxactly thosepixelsin the originalimagethatwere
responsibldor the initial patternmatch. Whenthe openingis repeatedthe erosionre-corverts
eachdilatedsetof pixelsto the samesetthatwasobtainedafter the first erosion. The openingis
alsoanti-extensve sincethe openedmageis alwayscontainedvithin the originalimage.

Theinitial motivationfor thiswork wasto construcgeneralizationsf theopeningandclosing
operationghatincludeSEswith both hits andmissesandthatsharemostof the specialproperties
of the standardopeningand closing operations. From the foregoing, one might guessthat an
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HMT followedby a dilation by only the hits in the SE would be one suchgeneralizatiorfor the
opening. This generalizedpeningwould reproduceall the hits in the original imagefor which
the HMT givesan exact patternmatch. Thus, it would extract shapefeatures,in their entirety
from theimage,andtheresultwould be a fixed point of simpleoperationgelatedto the specified
shapesUseof suchgeneralizedpeningswith SEscomposedf both hits andmissesjmplicitly
broadensour view of the patternghat arebeingmatched.WhenSEsare composedf hits only,
they are naturallyviewed in termsof shapedo be matchedin the image. But whenmissesare
introducedinto the SE, we canalternatvely considerthat the patternsbeing matchedare short-
rangetextures Thegeneralizedpeningthenextractstextural componentsagainin their entirety
Thedividing line betweershapeandtextural propertiess notwell defined but short-rangeexture
canbeintuitively understoodisthelocalgeometriaelationsbetweerhitsandmissesn theimage.
Thisis exactly whatis specifiedby the SE.

In the standardpeningandclosingoperationsthe foregroundandbackgroundixelsareim-
plicitly treateddifferently by usingSEsthatspecifyonly foregroundpixels. However, whengen-
eralizingfrom theHMT, wherebothforegroundandbackgroungixelsarespecifiedpnemayalso
wishto considerthe casewherethe subsequerdilation involvesthe backgroundixels.

Correspondingdo ary generalizedpeningoperation thereis a dual generalizedlosingthat
mustsatisfythe samegeneraketof propertiesasthe generalizeadpening,andin factis equivalent
to ageneralizedpeningon the backgroundvith anappropriatelytransformedsE.

Similar generalizationgan alsobe madeby usingrank order operations.A rank orderop-
erationon a binary imageis equvalentto a thresholdedcorvolution by a binary SE. Whenthe
SE consistsonly of hits, asin the usualdefinition, the rank orderoperationis shift-invariantand
increasingandthemorphologicakrosionanddilation arespecialcasesRankorderoperationsare
usefulfor patternmatchingbecausehey have greateimmunity thanerosionto shapedistortion,
but they aremorecomplicatedcomputationally Whena rank orderoperationis followedby a di-
lation by the SE,atypeof openingresultswhereshapesspecifiedoy the SEthatareonly partially
matchedy therankorder arereproducedn their entiretyontheresultingimage.In analogywith
thegeneralizedpeningdervedfrom the HMT, theHMT canfirst begeneralizedo arankorder
operationthatusesa SEwith both hits andmisses.This rank orderoperationcansubsequentle
generalizedo an openingby dilating the resultof the rank orderby only the hits in the SE. As
with the simplermorphologicaloperationsthe motivation for usingsuchoperationsequencess
the expandedsetof invarianceproperties.

In thefollowing sectionsyve first defineandthenderive propertiesof thegeneralize@dpenings
andgeneralizectlosings. Therearetwo typesof each,that we call foreground and badkground
openingsandclosings,andthat are simply relatedto eachother The foregroundoperationsare
idempotentwhereaghe backgroundoperationsareonly fixed pointsof openingby the hits. We
thendiscusstwo generalization®f the HMT that improve the robustnessf the patternmatch.
Thefirst is a computationallyefficient methodwe call a blur match,thatgivesimmunity to noise
nearshapeboundaries. A more flexible methodis the thresholdedconvolution (or rank order
filter), that givesan optimum decisionfor detectingshapesorruptedby salt and peppernoise.
Finally, the hit-missrank order operationis extendedto a generalizedrank order openingthat
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allows reconstructiorof partially occludedshapesndtextures.

2 Generalized Opening

Let the planarset X represent binaryimageandlet the compactset A be a structuringelement.
Theerosions anddilation & of X by A aredefinedas

X6A = {z:A+2CX}=(1X -2 (1)
2€A

XoA = {z: A+22X} = X +2 (2)
2€A

whered = {—a : a € A} is thereflectionof A with respecto theoriginandX + z = {z + z :
x € X} isthetranslationof X alongthe pixel vector+z.
TheHMT of X by adisjointpair (A, B) of SEsis definedin [11] asthe settransformation

X®(AB)=(XeA)Nn(X°eB) (3)

whereA is the“hit” SEandB is the “miss’ SE.By “hits” we will meanin this paperintersection
with theforegroundof X, whereaghe “misses”will referto intersectionwith the backgroundf
X, i.e.,thesetcomplementX“. Thusthe HMT is theintersectionof a foregrounderosionanda
backgrouncerosion.For brevity, we will oftenreferto the disjoint pair (A, B) of SEsasasingle
SEwith bothhitsandmisseslt shouldbenotedthatthey arebothdefinedwith respecto thesame
centerposition.

TheordinaryopeningX0A = (X & A) @ A of X by A is anerosionfollowed by a dilation.
Replacingthe erosionby anHMT leadsto whatwe call a “generalizedbpening”. Specifically we
definethe generlizedforegroundopeningof X by (A, B) asthe settransformation

U(X;A,B)=[X® (A,B)] 9 A. (4)

Wheneer (A, B) areimplied, we shall usethe simpler notation¥(X). Thusthe generalized
foregroundopeningis anHMT followed by a dilation with the hit SE A. It is a setconsistingof
theunionof hits for all matchesof the HMT.

As an exampleof the useof the generalizedoregroundopening,supposeve wish to extract
from theimageall lower edgesof horizontallinesthathave a givenminimumlengthof 20 pixels.
This canbe accomplishedvith a generalizedoregroundopeningusingthe SEin Figurela. The
filled circlesarehits andtheemptycircle is amiss,andthereferencegointfor the SEis indicated
by acrossin oneof thehits.
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Figurel. (a) SEfor lower edgesof horizontallines. (b) SEfor thin horizontallines.

When ¥ is appliedto the imagein Figure 2, the extractededgesare shovn in Figure 3a.
Becausave areusingonly onemissnearthe centerof the SE,theseedgesxtendinto theregions
wherethehorizontalandverticallinesintersectIf suchextensionis notdesiredjt canbeprevented
by placingtwo missesat the endsof the SE. If we wish to sieve the horizontallines, finding all
horizontallines of width equalto or lessthan 3 pixels (for example),the SEin Figure 1b canbe
usedwith thegeneralizedoregroundopening.Theresultwhenappliedto theimagein Figure2 is
shown in Figure3hb. As expectedthethin lines,in their entirety have beenextracted.
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Figure2. Imagecomposeaf smallfeaturesandhorizontallines. Thethin horizontallinesareone
pixel wide. Resolution:135pixels/inch.
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Figure3. (a) Gen.foregroundopeningwith SE of Figurela.
(b) Gen.foregroundopeningwith SE of Figure1b.

We now derive severalpropertiesof thegeneralizedoregroundopening.
PROPERTY 1 . Thegeneanlizedforegroundopeningis anti-extensivej.e.,
U(X; A B)CXO0ACX . (5)

Proof. SinceX®(A, B)C X © A andsincedilation is a monotoneincreasingoperator(i.e.,
XCY = X ACY & A), we have

U(X)C(XoA)dA=XO0ACX.
PROPERTY 2 . Thegenearlizedforegroundopeningby (A, B) is a fixedpoint of the openingby
A;ie,
[U(X; A, B)JOA = ¥(X; A, B) . (6)

Proof. Since(S @ A)OA = S & A of ary setS, the above propertyfollows by settingS =
X ® (A, B).

PROPERTY 3 . Thegenerlizedforegroundopeningis centerindependent,e., independentf the
locationof the SEpair; thus,for all vectos z,

U(X;A4 2, B+2) =Y(X;A, B). (7)



Proof. Intuitively, a shift of thecenterof (A, B) by z causesanequialentshift in thelocation
of the HMT, andan oppositeshift in the locationof a dilation. Hencethe sequencef HMT and
dilationis centerindependentFormally,

XoA+2)=(X6A)—-2; X°6(B+2)=(X°6B) -2z
Hence,S = X®(A+ 2z, B+2) = [X®(A4, B)] — 2. SinceS & (A + z) = (S ® A) + z, the proof
of (7) is complete.
By a similar agumentasin the previous property all generalizedperationsdefinedin this
paperareindependentf thelocationof the SE pair.
PROPERTY 4 . Thegenemrlizedforegroundopeningis idempotentj.e.,
V[V (X)] = ¥(X). (8)
Proof. Firstnotethat,sinceV is anti-e<tensve,we have
YU (X)]C¥U(X) (9)
To prove (8) we needonly to show that U[¥ (X )] D¥(X). LetY = X®(A4, B). Then
UV X)oA=(Y®A) B A=YO®ADY (20)

where® istheordinaryclosing.Since¥ (X )C X it followsthat[¥ (X )] DX andhencd ¥ (X)]|°c
BD>X¢o B. Then,sinceYC X¢ o B, we have

[¥(X)]°e BOY (11)
From(10)and(11)it followsthat¥(X)®(A, B) 2Y, whichin turnyields
U (X)] DY @ A=9(X) (12)

Hence from (9) and(12)it followsthat¥[¥ (X )] = ¥(X), andtheproofis complete.
We canalsodefinea generlizedbadkgroundopeningasthefollowing settransformation)(-):

¥(X;A,B) = [X®(A,B)| & B. (13)

Thusthe generalizedackgroundpeningis anHMT followedby a dilation with the missSE. As
we do for ¥, whenever (A, B) areimplied, we will usethesimplernotationy)(X).
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Figure4. (a) Gen.backgroundpeningwith SE of Figurela.
(b) Gen.backgroundpeningwith SE of Figurelhb.

In Figures4aand4b, we show the generalizedackgroundpeningof theimagein Figure2,
usingthe SEsin Figure laand1b, respectiely. Thesesetsare containedwithin the background
of Figure2. The generalizedackgroundpeningis a setconsistingof the union of missedor all
matchef the HMT.

PROPERTY 5 . Thegenemrlizedbadkgroundopeningof X is a subsebf X¢; i.e.,
¥(X; A, B)C X°OBC X°. (14)
Proof. SinceX®(A, B)C X°¢ 6 B andsincedilationis monotonencreasingye have
Y(X)C(X°©B)® B =X°OBC X

PROPERTY 6 . Thegenerlizedbadkgroundopeningby (A, B) is a fixed-pointof the openingby
B; i.e,
[¥(X; A, B)|]OB =9(X;A,B) . (15)

Proof. Sameasthe prooffor (6).

Thus, by performingboth operations¥(X) and(X), i.e., by dilating the HMT with the
hit SE and separatelywith the miss SE, we obtaintwo new binary images,which are subsetf
the original imageforegroundand background respectiely. Thusthe original image planeis
partitionednow into 3 setsof pixels: (1) the pixels of ¥(X), which arecontainedn X; (2) the
pixelsof ¢(X'), whicharecontainedn X ¢; and(3) therest,whicharethepixelsof [¥ (X )Uy(X)]°.
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Thisinformationcannotbe castsimply asa binaryimage.We needthreedifferentgraylevels,one
for eachof thethreeclasse®f pixels. Clearly, the pixel class(3) is theleastimportantandcanbe

treatedasthe new “background”.
Thefollowing propertyrevealsthatthereis a closerelationshipbetweeny andq).

PROPERTY 7 . Thegenerlizedbadgroundopeningof X by (A, B) is equalto the generlized
foregroundopeningof X¢ by (B, A); i.e.,

Y(X;A,B) = V(X% B, A) . (16)
Proof. Fromthedefinitionsof ¥ andvy we have

P(X;4,B) = [(Xed)n(X‘eB)eB
= [(X°eB)n(XoA)|®B
V(X% B, A).

Thecenterindependencef ¢ followsfrom (16) andthe centerindependencef W.



3 Generalized Closing

Theduality principle betweererosionanddilation, aswell asbetweeropeningandclosing,states
that

(X°cA)r=XaA (17)
X®A = (X°0A) (18)

whereX®A4 = (X @ A) © A istheordinaryclosingof X by A. Next weintroducea generalized
closingbasedon the duality principle. Thatis, we definethe generlizedforegroundclosingof X
by (4, B), denotecby ®(X; A, B) or simplyby ®(X) if (A, B) areunderstoodasfollows:

®(X; A, B) = [¥(X% A, B)Jf (19)
PROPERTY 8 . Thegenealizedforegroundclosingis a “dual HMT” followedby an erosion;i.e,

2(X;A,B)=[X@A)U(X°@B)|oA (20)
dual HMT

Proof. Fromthedefinitionsof ® and¥ we have

®(X;A,B) = [¥(X%A B)F
[(X°o {Vl) (X {?)] ® A]C
= [(XeA)n(XeB)eo
[(X¢e A)U (X & B) e A
[( |©

X & A)U(X°® B)

The“dualHMT” istheunionof two dilations:of X by thehit SE(A), andof X by themissSE
(B). It consistsof all pointsin animage X whereeitherthetranslatechit SE A intersectsat least
oneON pixel or thetranslatednissSE B intersectstleastoneOFF pixel. Thus,the“dual HMT”
is the setof pixelswherethereis atleasta partialmatchto the SE,andthe generalizedoreground
closingis a“dual HMT” followed by erosionby the hit SE. The generalizedoregroundclosing,
definedin (20), canalsobe visualizedasthe setcomplemenbdf a generalizedoregroundopening
onthebackgroundIn thisview, it is the setcomplementbf the unionof hits for all matchego the
setcomplementmage(wherethe SE mustalsobe spatiallyinverted).
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Figureb. (a) Gen.foregroundclosingwith SE of Figurela.
(b) Gen.backgrounclosingwith SE of Figurela.

Figure5ashavstheactionof ® ontheimagein Figure2, usingthe SEin Figurelaasbefore.
Thelinesof OFF pixelsin Figure5aareproducedy first finding thosepointsin theimagewhere
theline of hitsintersectOFF pixelsandthe singlemissintersectsan ON pixel (this occursonthe
top edgesof thelinesandon the top pixels of thetext), andthenerodingthe resultby the line of
hits. Notethatthe resultinglines of connectedFF pixelsarecontinuousn thetext section.We
next give severalpropertiesof thegeneralizedoregroundclosing.

PROPERTY 9 . Thegenealizedforegroundclosingis extensivej.e.,
®(X;A, B)DX®ADX . (21)

Proof. Since(X @ A)U(X“® B) DX @ A, andsinceerosionis amonotondncreasingperator
(i.e, XCY = X6 ACY 6 A), wehave

B(X)D(XBA) O A= XOADX.

PROPERTY 10 . Thegeneanlizedforegroundclosingby (A, B) is a fixed point of the closing by
A;ie,
®(X; A, B)®A=9(X; A B) (22)

Proof. Since(S © A)®A = S © A for ary setS, theabove propertyimmediatelyfollows.
PROPERTY 11 . Thegenemlizedforegroundclosingis idempotent;j.e.,

O[0(X)] = ¢(X) . (23)
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Proof. Thisfollowsfrom (19) andtheidempotencef the generalizedoregroundopening:

)
)I°

O[O(X;A,B)] = [¥(®(X;A,B)5A,
[U([T(XA,B)); A,
[W(X% A, B)
= ®(X;A,B).

B
B

As for thegeneralize@peningswe definethegenemlizedbadgroundclosingof X by (4, B),
denoteddy ¢(X; A, B) or simply by ¢(X) if (A, B) areimplied, asfollows:

¢(X; A, B) = [p(XG A, B)|* (24)

By working in a similar way asfor the foregroundclosingit canbe shovn that the generalized
backgrounctlosingis a“dual HMT” followedby anerosionby the missSE;i.e,

#(X;A,B)=[(X®A)U(X‘®B)|eB (25)

[\ /

dual‘lr—IMT

Figure 5b shaws the action of the generalizetackgroundclosing on the imagein Figure 2,
usingthe SEin Figurela. Thebackgroundn Figure2 is containedwithin this set.

PROPERTY 12 . Thegeneamlizedbadkgroundclosingof X containsX¢; i.e.,
$(X; A, B)DX®@BDXC . (26)
Proof. Since(X & A) U (X° @ B) DX°@® B, andsinceerosionis increasingwe have
#(X)D(X‘®@B)o B=X‘®@BDX"
PR(_)PERTY 13 . Thegenerlizedbadgroundclosingby (A, B) is a fixedpoint of the closingby
e B(X: A, B)®B = 6(X; A, B) (27)
Proof. Sameasthe proof of (22).

PROPERTY 14 . Thegenerlizedbadkgroundclosingof X by (A, B) is equalto the genearlized
foregroundclosingof X ¢ by (B, A); i.e.,

d(X;A,B)=d(X%B,A). (28)
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Proof. Thisfollowsfrom thedefinitions(19) and(24).

Sofarwe have seernthatthetwo generalizespenings¥ andq) yield two setswhoseunionis a
subsebf theoriginalinformation;i.e., ¥(X)C X andy(X)C X¢. By contrastthetwo generalized
closings® and¢ yield two setswhoseunionis largerthantheoriginalinformation;i.e., ®(X) DX
and¢(X) DX°.

We next show the ability of the generalizedpeningsandclosingsto extracttextural patterns.
Considerthe hit-miss SE, givenin Figure 6, which hasa short-rangeperiodictexture. Figure7
shows the applicationof the HMT andthe generalizecbpeningsand closings,usingthis SE, to
animage. The strengthof the HMT signal (b) shouldbe contrastedvith that of the generalized
foregroundopeningin (c), which shavsall theforegroundpixelsin (a) thatparticipaten theHMT
match.Thegeneralizedackgroundpeningin (d) shonvs backgroundgixelsin (a) thatparticipate
in theHMT match.TheOFFpixelsin thegeneralizedoregroundclosing(e) arebackgroungixels
in (a) thatarenot selectedby the dualHMT followed by an erosionof thel hit partof the SE. In
this example,the numberof suchpixelsis large andcomparabléo thatof theforegroundpixelsin
(c). Finally, the OFF pixelsin the generalizedackgroundlosing(f) areforegroundpixelsin (a)
thatarenot selectedy thedualHMT followedby anerosionof the misspartof the SE.Fromthis
example,it is apparenthattheseoperationanextractsignalscorrespondingo textural patterns
within imagesthatareof greaterstrengththanmaybe expectedrom visualobsenation.
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Figure6. Hit-miss SE for shortperiodtexture.
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Figure 7. (a) Startingimage. The thin vertical lines are one pixel wide. Resolution: 48 pix-
els/inch.(b) HMT. (c) Generalizedoregroundopening.(d) Generalizedackgroundpening.(e)
Generalizedoregroundclosing. (f) Generalizedackgroundtlosing.
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4 HMT with Rank Order Filters

TheHMT of X by (A, B) detectshesetof pixel locationsatwhich A occursin X andB occursin
X¢. ThustheHMT is abinarymatchedilter thatactssimultaneouslypothontheimageforeground
andits background. Becausat attemptsto performan exact matching,it is sensitie to noise,
occlusionsof imageparts,or uncertaintiesaboutthe exact shapeof the hit or missSE. To make
it morerobustonecould performa union of HMTs, eachwith slightly differentSEs. This is the
shapeaecognitionapproacHollowedin [1]; however, it couldbe computationallyeryintensedue
to the potentiallylarge numberof SEs.

Blur Matching: A moreefficient methodfor improving the robustnes®f the matchis to com-
putea blur match. In distinctionwith the exact matchof anHMT, we definea blur-matchHMT
(BHMT) to requirethat (1) thereis an ON pixel within aradiusr; of eachhit, and(2) thereis an
OFFpixelwithin aradiusr, of eachmiss.For SEsthatdescribeshapes$o bematchedn theimage,
the blur matchgivesimmunity to pixel noisethatoccursnearthe shapeboundaries Fortunately
this blur matchis computecefficiently by first dilating theimageby a disk SE R; of radiusr; and
dilating the setcomplementmageby a disk SE R, of radiusr,, beforecomputingthe intersection
of erosiondn (3) for the HMT:

BHMT(X; A, B; Ry, R)) = [(X @ Ry) © A|N[(X° & Ry) © B (29)

A generlizedforegroundblur openingis thengeneratedby following the BHMT by adilation by
A:

Uy (X5 A, B; Ry, Ry) = [(X @ R)e AN((X@R;)©B)| @A (30)

PROPERTY 15 . Thegenealizedforegroundblur openingby (A, B), with blurring disk SESR;
and Ry, is a fixedpoint of theopeningby 4; i.e.,

[‘Ijblur(X; A7 B; Rl; R2)]OA = \I}blur (Xa A7 Ba R17 RZ) - (31)
Proof. Sameasthe prooffor (6).

A moreflexible approachor constructinga robustgeneralizedpeningis to replacethe ero-
sionsin the HMT with moregeneralfilters. Therearetwo suchgeneralizationsyhich, although
differentin their definitionandimplementationaretheoreticallyequivalent. Thesearethethresh-
old corvolution andthe rank order filtering approach.In the remainderof this section,we will
assumehatwe dealonly with discretesignals.

ThresholdCorvolution: Let usrepresenthe set X with a 2-D binarysignalz(n), wheren is
apixel vector;i.e.,z(n) = 1if n € X andX(n) = 0if n € X°. Similarly, let w(n) bethethe
binarysignalrepresentingfinite SEW, whichis alsoviewedasawindow of pixels. Considetthe
following thesholdedorvolution of the input signalz(n), which yields a binary-to-binarysignal
operation:

H[z xw(n) — 0] (32)
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wherex denotesorvolution, H is Heaviside's unit stepfunctionequalto H(s) = 1if s > 0 and
H(s) = 0if s < 0, andf is avariablethreshold.If § = |IW| where|W| denoteghe numberof
pixelsin W, then (32) is equivalentto the erosionof X by W. However, if § < |IW/|, thenthe
thresholdcorvolution imposedooserconditionsthanerosionon detectingl” in X, andhenceit
couldpotentiallybe morerobustby adjustingd. Theseideashave beenappliedto seseraltemplate
matchingapproachefor binaryobjectdetectionasdescribedn [3, 10, 8].

RankOrder Filtering: Givenadiscrete-timesignal f (n) anda finite window W, the r-th rank
ordertransformatiorof f by W yieldsthesignal

fO,W(n) =r —thlargestof f(n+ k), ke W (33)

wherer = 1,2,...,|W|. Applying rank order filters to the binary signal z(n) representingX
yields a binary signaltoo.! In [6] a set-theoretiaefinition of binary rank orderfilters wasgiven
thatavoids sortingandusesonly pixel counting;thusthe r-th rank ordertransformatiorof X by
W is

XOW=A{z:|Xn(W+2z2)|>r} (34)
Notethatif » = |[W|, then XO,W becomeshe erosionX & W; for r = 1 we geta dilation.
Obviously, the thresholdcorvolution (32) andthe binary rank orderfiltering (34) yield identical
signalsif § = r.

In [5] it wasshown thatthe corvolution of a binarysignal f with a binarytemplatew (repre-
sentinga SE W) comparedo a threshold,or its equivalentrank orderoperation s the optimum
(usinga Bayesiarformulation) decisionfor detectingw in f, when f containsa shiftedversionof
w corruptedwith binarysalt-and-peppemoise.In [9] acompositionof rankorderfilter anda dila-
tion wasproposedor featuredetectiomasarobustreplacemenof the ordinaryopening.This r-th
rank-dilationoperationof a (binary or non-binary)signal f by a binarytemplate(set) W consists
of ther-th rankordertransformatiorof f by W followedby adilationby W. Thustherankorder
operationreplaceshe erosionin an ordinary openingand (by varyingr = 1, ..., |WW|) senesin
detectingl’ morerobustly thanthe erosion,whereagshedilation redravs I atthe detectedoca-
tions. The sameoperationwascalledrankopeningin [5] andshapeinferenceopeningin [12]. In
[9] therank-dilationoperationwasfurther superimposedvith the original imageusingpointwise
minimum,which makesit anti-extensive andidempotent

Motivatedby the above ideas,whererank order operationscanimprove the performanceof
matchedilters whenthey replaceerosionswe will userankorderfiltersin the HMT of the gen-
eralizedopening. Thus,for a givendisjoint SE pair (A, B), we definethe (p, ¢)-th rank hit-miss
transformof X by (A, B) asthesettransformation

X ®,4(A,B) = (X0,4) N (X°0,B) (35)

IBinary rank orderfilters were usedin [2]. Rankorderfilters for non-binarysignalswere usedin [4, 7]. For
relationshipdetweerrank orderandmorphologicalbperationsee[6].

2In general,notethatif T'(-) is ary increasingsetoperation thenthe operationX — X N I'(X) is increasing,
anti-extensive,andidempotent.
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wherep = 1,2,...,|A| andq = 1,2,...,|B|. Then,the (p, q)-th generlized foreground rank
openingof X by (A, B) is thesettransformation

Uy e(X; 4, B) = [(XO,4) N (XT,B)| @ A (36)

ThusV, , consistsof arank HMT followed by dilation with the hit SE. Similarly, we candefine
therankorderversionsof the othergeneralizedpeningsandclosings.

PROPERTY 16 . Thegenealizedforegroundrankopeningby (A, B) is afixedpointof theopening
by A4; i.e.,
¥, .,(X;A,B)JOA=Y,,(X;A,B). (37)

Proof. Sameasthe prooffor (6).

PROPERTY 17 . Thegenerlizedforegroundrank openingby (A, B) is notin generl idempo-
tent, exceptin the casewhee p = |A| andg = |B|, whee it reducego the previously defined
genenlizedforegroundopeningV.

Proof. Consideranimagewith m ON pixelsin a horizontalline, anda SE A with n < m
horizontalhits. If p < n, therank orderoperationwill causethe imageto shrinktom — p + 1
pixels,andthe subsequentilation expandsit to m + n — p pixels,whichis largerthanm pixels.
Eachsubsequerdpplicationof the generalizedankorderopeningwill alsoincreaseheimageby
n — p pixels.
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Figure8. Generalizationsf the Opening HMT, andRankOrderFilter.

Thesevariousextensionsaaresummarizedn Figure8. The erosioncanbegeneralizedn three
ways: by forming anopening by choosingarankordersmallerthanthe cardinalityof the SE,and
by forming a HMT. Both the rank orderfilter andthe HMT canbe generalizedo an openingby
dilating with thehitsin the SE. TheHMT canbegeneralizedo ablur HMT, which canbefurther
generalizedo a blur opening.And therank orderfilter andHMT canbe combinedto form a HM
rank orderfilter, which canbe furthergeneralizedo an openingby dilating with the hits. Finally,
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not shawvn in Figure 8, arank orderoperationcanbe appliedto a blur HMT, which canthenbe
openedo form ageneralizedankorderblur opening.

Theseoperationsare of morethanacademidnterest. The all-or-nothingcharacteof the ero-
sionandHMT complicatetheir usewith highly variableimagedata. However, the blur andrank
orderfilters,usedseparatelyrin conjunction provide sufficientflexibility to permitreliablestatis-
tics to beaccumulatean noisyor variabledata.

Finally, notethatall the ideaspresentedn this sectionon rank HMTs and generalizedank
openingsf a (binaryimage)setX canbeextendedeasilyto gray-level imagesf by replacingall
rankordersettransformationsvith rankorderfilters actingon gray-level imagesreplacingn with
pointwiseminimum;andreplacingX ¢ with m — f wherem is the maximumgray amplitude.
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