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Abstract

The usefulness of the hit-miss transform (HMT) and relataddforms for pattern match-
ing in document image applications is examined. AlthoughHIMT is sensitive to the types
of noise found in scanned images, including both boundadyrandom noise, a simple exten-
sion, the Blur HMT, is relatively robust. The noise immunitithe Blur HMT derives from its
ability to treat both types of noise together, and to rembeenrt by appropriate dilations.

In analogy with the Hausdorff metric for the distance betvieo sets, metric generaliza-
tions for special cases of the Blur HMT are derived. Whereassdorff uses both directions
of the directed distances between two sets, a metric defieed a special case of the Blur
HMT uses just one direction of the directed distances betfereground and background
components of two sets. For both foreground and backgrahedemplate is always the first
of the directed sets. A less restrictive metric generabmatwhere the disjoint foreground and
background components of the template need not be be setaoens, is also derived. For
images with a random component of noise, the Blur HMT is simasonly to the size of the
noise, whereas Hausdorff matching is sensitive to its lonatt is also shown how these metric
functions can be derived from the distance functions of géneground (FG) and background
(BG) of an image, using dilation by the appropriate temglate

The Blur HMT can be used as a fast heuristic to avoid more estpeinteger-based match-
ing techniques, and it is implemented efficiently with b@slemage operations. The FG and
BG images are dilated with structuring elements that depenichage noise and pattern vari-
ability, and the results are then eroded with templatesselérfrom patterns to be matched.
Subsampling the patterns on a regular grid can improve spregdhaintain match quality, and
examples are given that indicate how to explore the paramptee. Truncated matches give
the same result as full erosions, are much faster, and foe sqplications can be performed
at a restricted set of locations.

Keywords: pattern matching, scanned image, hit-miss transform, ttatfsdistance, blur
hit-miss, image morphology, OCR



1 Introduction

Pattern matching techniques are critical for all aspecti®finalysis of document images. Doc-
uments are typically scanned into a binary image, and manlyeobperations subsequently per-
formed, both for page segmentation and character idenidicause the pattern matching tech-
niques (e.g.erosionand its dualdilation) of binary image morphology. There are several reasons:
they are implemented by fast boolean operations; they caisée either for extracting or extend-
ing pixel aggregations, both for direct use in later imagecpssing and for subsequent analysis;
they are translationally invariant; they can be used ta we¢h foreground (FG) and background
(BG) simultaneously; and they can be used without regarémmected component analysis. Fur-
ther, there exist a variety of methods for controlling theseammunity of these operations.

One of the most important uses of pattern matching is in tladyars of character shapes. For
binary input, the result of image processing can be eitheairlgior gray (integer value) images.
Binary results are much faster to compute, but they conéas information. Even for binary out-
put, the internal operations can be integer or boolean. rieger operations, such as convolution
and thresholded convolution (rank order filters[8]), someel of noise immunity is achieved, but
at the price of doing expensive arithmetic operations o @ac|.

We use the terntemplateto refer to the pattern of FG and BG pixels that are to be
matched in the image. THet-miss transfornr{HMT) is a faster boolean operation that performs
translationally-invariant matching between both the F@ B® of template and image sets. How-
ever, itis prone to error from noise because exact matcleagquired between image and template
in both the FG and BG. Because of the simplicity and power efHIMT, there have been many
attempts to use it for pattern matching. The usual approath ¢choose a subset of the template
pixels, typically sparse. We cite a few examples.

Zhao and Daut[3] gained noise immunity, relative to a HMTusyng either boundary pixels
of eroded FG and BG templates, or skeletons of these temsplestructuring elements for the
HMT. Wilson[15] automated the design of the structuringwedats through a training process that
searched for the smallest subset of pixels that would attendesired level of discrimination.
Kraus and Dougherty[5] generated a sparse set of strugtetaments by thresholding a single
grayscale instance of each character. Appropriate chdi¢keresholds is the critical element:
if chosen too conservatively, the subset is too sparse akd [@discriminatory ability; if chosen
too tightly, instances with atypical variation are misse@illies[4] took a somewhat different
approach, accumulating statistics from instances of elafracter, and thresholding the aggregates
to generate non-sparse structuring elements. From thege;pixel features were extracted and
used to train a classifier for character discrimination.

One characteristic that these methods have in common idemg@itto compensate famage
noiseby altering thetemplate and leaving the image alone. We argue here that although it i
useful to choose a subset of template pixels, it is impot@aadter the image before performing



the HMT. Theblur hit-miss transfornfBHMT) has been introduced to do precisely this[1]. Unlike
the HMT, the BHMT performs the match between template andjantor both FG and BG, with
a variable degree of tolerance to alignment of image and lempixels. The “blur” parameter
specifies the maximum distance allowed between a templattgod the nearest image pixel, in
order to constitute a match for that template pixel. Statesiway, there is an interesting relation
between the BHMT and the Hausdorff metric for the distancevéen two sets, but the differences
are important for their uses in applications.

To understand the usefulness of the BHMT, it is necessarymsider the origin of noise in
scanned documentimages. We postulate a simple model, wdréability between instances in the
image is caused by two different processes. One typeusdary noise;aused by the binarization
process along the edge of an object. Depending on the sebgbignment of scanned objects with
scanner pixels, considerable edge variation occurs. Thiadary noise is typically restricted to a
width of two pixels, including both FG and BG boundary pixélsie second type imndom noisge
either generated in printing or due to scanner defects ssidirteon the platten. This is assumed to
occur independently of the pixels in the scanned objectjantbst often observed as isolated FG
“pepper” pixels surrounded by BG. It should be noted thahlgpes of noise occur ihoundary
pixels defined to be pixels of either FG or BG that are adjacent toel pif the opposite type.
Thus, operations that treat boundary pixels appropriatédlynfluence both types of noise.

Even without random noise, boundary noise will defeat an HNHEE uses boundary pixels in
the template. Therefore, when computing matches, it issseeg to give little or no weight to the
boundary pixels. On the other hand, the non-boundary pikelsause of their high correlation be-
tween template and image, are critical for matches. Diffees occurring between non-boundary
pixels in image and template, although relatively rare| defeat both a matching technique like
HMT, that requires an exact match of all pixels, and a metrahsas Hausdorff, that is sensitive to
such “outliers”.

The paper is organized as follows. In Sec. 2.1 the BHMT is @dfiand the method in which
it provides immunity to both types of noise is described gately. In Sec. 2.2, the Hausdorff
metric is introduced, and the connection between this measusets and operations using mor-
phology is made. Also, an illustration is given to show whg Hausdorff metric is not appropriate
for matching templates to noisy images. In Sec. 2.3, two iméinctions are constructed, that
are related to special cases of the BHMT. The same exampiensused to show how the BHMT
succeeds in matching templates to noisy images. Then i2ed¢he BHMT metric functions are
again derived, this time from dilations by the template & tlistance function for the image. In
Sec. 3, several methods for efficiently implementing the BHAe described, including subsam-
pling the template. Some experimental results are giveem &to illustrate the use of the BHMT
in identifying characters, and the major findings of the pawe summarized in Sec. 5.

We end this section with an illustration, in Fig. 1, of the fgnof rank and blur template
matching operations. The HMT generalizes the erosion toatipas that match in both FG and
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Figure 1 Family of rank and blur template matching operations.

BG. The rank operations take thresholds on convolutiongreds the blur operations remove
boundary pixels appropriately before doing strict matghifherank HMT, a relatively expensive
integer operation, requires co-location of image and tateixels, but eases the constraint on the
number of matches. The rank HMT and the BHMT can also be cosdhimto therank BHMT, in
which a match is accepted if only a given number of templatelpiare within a given distance of
the nearest image pixel. In the sequel, we concentrate oBHIMET, but we give one example of
the use of theank BHMT.

2 Blur HMT

2.1 Basic definitions

We are strictly interested in the discrete case of sets amttiins defined o#?, although exten-
sions can be made to the continuous case or higher dimendibiesbasic morphological opera-
tions areerosionanddilation. The erosion of a binary image by a structuring element (SH is
the set operation defined by

XeB= (X4 ={xeZ” B, CX} (1)
beB
whereX , is the translation of imag& by —b. The second definition states that erosion generates
a set with a non-empty result at every location where thestet@ of B fits entirely withinX. The
dilation of an imageX is defined



XeB=Xo= UB, ={r+beZ’|zeX,be B} (2)
beB zeX
The first and second definitions state that dilation gengatet composed of the union of trans-
lations of X by elements inB, andv.v. Note thate and & are not the original definitions of
Minkowski subtraction and addition, respectively, whigguire an inversion of the SE about its
center[12].
The HMT is a morphological template matcher whose definiimriased on the erosion
operator[12]. The HMT of a binary imagg by a disjoint pair(r;, 7,) of SEs is defined as the set
transformation

X®(7’f,7’b) = (X@Tf) N (XC@TI,) 3)

where X ¢ is the set of BG pixels of. The HMT generates a set with non-empty result at every
location where both the FG Sk fits entirely within X and the BG Sk; fits entirely within X ¢,
the complement oK. It is common to speak of the elementsrinashits, of elements inr, as
missesand elements not in their union dsn’t-cares

There are several methods for reducing the sensitivity ttmbdary noise. We can erode the
template SEs by the blur SEs, or dilate the image by the blsg; SEprior to the HMT. Eroding
the template removes its boundary pixels from consideratitnereas dilating the image removes
the image boundary pixels. The random noise pixels are #iscted: eroding the template opens
up FG and BG holes, so they are not included in the match;imtijahe image closes up holes
(i.e., removes salt and pepper) in FG and BG. The resultsesfetloperations (followed by the
HMT) differ, and the choice must be made based on the statistiexpected noise. For document
images, the template is expected to be free of salt and peyjs in situations where it can be
generated by averaging a large set of instances. Howevweistiot true for the image. Salt and
pepper noise in the image will prevent matches between F@eandf the template, respectively.
Generally, it is imperative to remove noise pixels from bibth template and image before doing
the HMT. For situations where random noise is more frequeihé image than in the template,
we thus define the BHMT of a binary imagé using the SE paifr;, 7;,) for the template and the
SE pair(5;, 8,) for blur as follows (Also see [1]):

X®(r5,1:81.8) = (X@Bp)orn (X aB)on (4)

It can be noted that there is no requirement that the SEs osétur are symmetric about their
center. Translation of the center of a SE simply resultsangtation of the dilated image. Also
note thatr; andr, are typically non-overlapping. Take for example the casereli; = o, 5, = o
andT; N7, # : it corresponds to a traditional HMT (no blur), using an dapping pair of SEs.
In such a case, for any s&t, one can easily verify thaX ® (77, 7,) = 0: itis indeed impossible
to translate(7,, 7;,) in such a way that the translated is included inX andthe translated, is
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included inX“. With some blur, that is when sefs and 3, are not reduced to a single pixel, it
is possible to obtain a non-empty BHMT results even when 7, # (). However the practical
interest of using overlapping andr, is extremely limited. In the sequel, we typically assumé tha
TN T = 1)

2.2 Relation between Hausdorff metric and morphology

The Hausdorff metric is a distance between sets that allowesto define a topology on the set
of all possible sets in the plane[9]. In image terminologys ia distance between the FG of two
images. The relation between the Hausdorff metric and agdaturred template matches has
been noted previously[2], and we present the connectioa her

Define the distance function[11] from a pojnto the nearest point in a st to bed(p, X). If
p € X, thend(p, X) = 0. For two setsI" and/, define thedirectedHausdorff distance[6] from
T = I as the maximum over the pixels in the $ebf the distance from the pixel ifi to its nearest
pixel in I:

D(T,I) = superd(t,I) (5)

For applications to document images, consifido be a FG template and consideto be a
windowedsubset of the imag& with support equal to that of the template. Then for eachtpwsi
in the plane represented by, there exists a windowed subdetc X and a directed Hausdorff
distanceD(T, I) betweerl" and the co-located. Suppose this distanceds|f the set is dilated
by a disk of radiug), the distance between the dilated set dnhdill be zero. Consequently, an
erosion of the dilated by T will give a non-empty result.

The Hausdorff metrid) is formed symmetrically betweéhR and I, as the maximum of the
two directed Hausdorff distances:

Dy(T.I) = max{D(T,I),D(I,T)} (6)

Its relation to the blurred match between template and wirgdbimage subset is[2]

Dy(T,I) = inf{p>0| T C({I®pB)andI C (T @ pB)} (7)

where B is the unit disk SE. This is a symmetrical relatiomieetn FG sets. If andT are very
similar, small dilations act only to reduce the distancetgbuations from boundary pixels. Thus,
a single non-boundary noise pixel in eitheor T can render the Hausdorff distance quite large.
The effects of noise are illustrated by the two sets showngnZ Call the sets on the left and
rightT andI, respectively. We have chosen the template to be less noisglahtly eroded with
respect to the image. The directed Hausdorff distanceggeakby these sets are shown in Fig. 3.
The left frame is the directed distant¥7, ), /) fromT = I, evaluated at each possible location
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Figure 2 Two sets used to illustrate effect of noise in Hausdorffaticseé. One
percent of random noise was added to the set on the right.

Figure 3 Directed Hausdorff distances generated from sets in Fig.The left

and right frames are the directed distande¢l, ,, /) andD(I, ), T),
respectively.



of T' with respect tdl. Darker values represent shorter distances. The best nvatbha distance

of 0, is from the dark region near the center. However, bexafithe noise in/, the distance
D(I(,, T) from I = T, shown in the right frame, has a very large value at that iocatn fact,

the smallest distances (/,,,, T') are found near the boundaries, due to clipping. This cligpin
effect is another complication of using a windowed diredtiadisdorff distance from large image
to a small template. For this example, the Hausdorff distdng (7, I) is identical to the directed
distanceD(/,,),T") for every translate of, because the match between the two sets is entirely
obscured by the noise ih

2.3 Blur HMT metric

The BHMT produces a binary image representing locations mf&ch with a given amount of
FG and BG blurring. In this section, we construct two BHMTated distance metrics, in analogy
with the Hausdorff metric. These are a generalized distiet@een image and template that,
when thresholded, produce a BHMT for the value of FG and B@&dxwial to the threshold.

When the template SE is located on some windowed subgeif X, its center falls on coor-
dinates(z, y). Label each subsétof X by this location(z, y). Then form a FG/BG metri®rp,
in analogy toDy, that measures the directed distance between the FG and BGop@ and /.
The obvious choice for direction i = I. Indeed, since the template is supposed to have been
carefully chosen, it should exhibit little boundary pix@ise and no salt-and-pepper noise. Since
the main purpose of the dilation operations used as paredHMT operation is to eliminate such
noise before matching (See Eg. 4), it would not make senssealiwection/ = 7. For the same
reason, using Hausdorff distan€g; typically does not work as well as this directed blur HMT
metric because of adverse effects of salt-and-pepper tyise.nFor example, mainly because of
pepper noise, the Hausdorff distance between the two sétgof would be very large. On the
contrary, thedirectedBlur HMT distance from Fig. 2a to Fig. 2b would be dramatigaimaller,
which reflects the fact that these two sets simply are difierestances of the same letter P.

Accordingly, we now dilate the fullimag& and use théz, y) translate off", T(, ,y, to compare
T with each subset of X in computing the metric:

DrnlTyyX) =  inflp>0 | Ty C (X0 pB)and TS, C (XC @ pB)} (®
= ma’x{D(T(x,y): X): D(T(g,y): Xc)} (9)

To understand the relation betweén-z and the BHMT, consider the BHMT in its most simple
form, with two disk SEs of equal radius for the blur and two 3&sthe templates that are set
complements. Setting = 7" andr, = T, the BHMT is found by thresholdin®rs:

X® (T: TC;TB:TB) = {(Sﬁ,y) € Z2 ‘ DFB(T(x,y):X) S T} (10)



The restriction inDyp that the two SEs for the templates are set complements cénp eas
relaxed to the disjoint constraint for SEs in the HMT, by reigg only thatr; C 7" andr, C T°.
Then the metridrp is generalized to

Dpuur(ty, o, X) = inf{p=0| 74, S(X@pB)andn,  C (X ®plI)

with the thresholding relation

X® (rs,m;rB,7B) = {(z,y) € Z* | Dpamt(Tfe, s Ty X) < T} (13)

We use the notation “BHMT*” to indicate the special case vehttre same dilation operator is
used for both FG and BG. For the general case there are two B#isidnce metrics, one for FG
and one for BG, and the BHMT is derived from from them by tho#dimg each separately and
AND-ing the results.

For reasons of both efficiency and effectiveness we are lysindrested in BHMT where
Ty # ch andg; # . Examples will be given in Sec. 4. In Sec. 2.4, we arrive atstagice metric
generalization for the BHMT by a different route.

WhereasDy has bi-directional symmetry between two FG sets, and igntire BG,Drp
has FG/BG symmetry but imposes a directionality on the imgldietween the two sefs and X.
Unlike the Hausdorff metricDrp and Dy are relatively immune to salt and pepper noise
pixels in X. However, they are sensitive to noise in the themplateo in practice, one must
ensure that the FG and BG of templdtes free of salt and pepper noise.

Referring to Fig. 4, illustrating the BHMT for the same exdeng@s previously shown for Haus-
dorff, the directed distanc® (T, I) in the first frame is identical to the directed Hausd@ffT", I)
in Fig. 3. (Although we now omit thér, i) label onT', remember that these functions are defined
over the setz, y) € Z* of translates of".) However, the second frame gives the directed distance
for the BG,D(T¢, I). The effect of noise on this distance is small: it is deteediby thesize
of the noise in/, rather than thelistancefrom the noise td'. The contribution from the BG does
affect the overall match to a small extent, as showrhy; in the third frame. This is the special
case of the BHMT metri@ g+ Where the FG and BG templates are set complements. Because
the BHMT distances are always direct€d= X from the template to the large image, boundary
effects occur only on the boundary of the image

Geometrically, the BHMT as we have defined it has the follgnimterpretation: the “blur
dilations” of imageX and its complemenX © create a halo of pixels near image boundaries. This
halo can be regarded as the “don’t care” region of imagend one of its nice characteristics is
that it typically contains all the salt and pepper pixelsalBMHT operation based on templafe
a match is obtained when the FG of the template is located opi¥&Es of the image or on “halo
pixels”, and when the BG of the template is located on BG gix¢khe image or on “halo pixels”.
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Figure 4 BHMT distances generated from sets in Fig. 2. The first andrsgc
frames are the directed distancesT, I) and D(T¢, I¢), respectively.
The third frame isD 3, the maximum of the two directed distances.

In other words, this BHMT operation introduces a way to usen‘ticare” pixels in the image
as well as in the template used for matching. As such, it istarabextension of the traditional
hit-miss operation.

2.4 Blur HMT metric derived from distance function

Let us now consider a templafeand a binary imagé&’. For each translatiofy, , of this template
we are interested in computing the directed Hausdorff dest#® (7|, ), X) between the translated
template andX. This Hausdorff distance is equal to the smallest isotrdpation size ofX such
thatT(, ,) is included in this dilated image. Specifically,if represents thg x 3 isotropic ball of
the 8-connected distance functiahxX 3 square), we can write

D(Tay), X) = min{n > 0| Tz, C (X @ nB)} (14)

where X @ nB represents the n-fold dilation of by B, or equivalently the dilation ok by a
(2n + 1) x (2n + 1) square structuring element, whose center is located oedmgtric center.
Consider now for any pix€lz, y) the following distance function:

dx(z,y) =min{n > 0| (z,y) € (X & nB)} (15)

This distancely is simply a traditional distance function computed on thekiggound of X it
assigns to each pixel its 8-connected distance to the rigaxesof X. Obviously, any pixe(z, y)
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included inX is given a value of 0 by this distance function. See [11, 1Bjfore information on
distance funtions and their use in morphology.
Putting together the previous two equations we can write:

D(Tjny, X) = masx{dx(i.) | (i.) € Ty} (16)

In other words, the directed Hausdorff distance frbm,) to X can be obtained by extracting the
maximal value of distance functiah; over pixels(z, j) belonging to the translated templdig ).
Therefore:

that is, the directed Hausdorff distance between temfldtanslated to pixe{z, y) is equal to the
value of the grayscale dilation of distance functibpby templatel” at pixel (z, y).

The benefits of Equation (17) are numerous. First, it pravigewith a computationally attrac-
tive method to compute a map of the quality of directed Hatfsdwtch at each pixel location: in
this map, the pixels with value 0 correspond to locationsre/llee translated template exactly fits
inside imageX, pixels with value 1 are the locations where the templatarig&le a dilation of
size 1 ofX, etc. Second, looking at this map as a grayscale image, aenohtechniques can now
be used to extract its local minima, which provide us withlteation of the local best matches of
the template. In addition, the same method can be usedWithnd X “, thereby providing a map
of the matches between template complement and image corapte

We can one step further: to improve the “granularity” of imistric and speed up the algorithm
significantly, we propose to use an asymmetric distancetifumén equation (17). Instead of
defining it based on @ x 3 structuring elemenf3, use a2 x 2 square with the center of the
structuring element at the upper-left. Usifigor distance functions has two main advantages:

e The distance function based ¢hcan be computed in a single raster-order pass through
image X instead of the 2-passes required by traditional distanoetions. See [14] for
more details on this asymmetric distance and its use in fagbnological algorithms.

e The granularity of Hausdorff distance measurements isongd by a factor of 2. In the
“match map” obtained through application of equation (15ihg this asymmetric distance,
all the pixels with an odd valugy— 1 correspond to cases where a dilation wit2a) x (2p)
square provided the Hausdorff match. Using the distancedbas3 x 3 elementB, one
would not be able to differentiate between these matchesttadbwer-quality matches
where a dilation by2p + 1) x (2p + 1) was required for the match.

However, one caution in using such a non-symmetric dilagdhat the results are shifted by one
pixel with respect to the ones obtained using a symmetratidit. The left and right frames of
Fig. 5 show this distance function for the two sets in Fig. 2.
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Figure 5 Distance function generated from the left and right setsim B, re-
spectively

Now, distanceD gz requires taking the maximum of two such directed distanmes,com-
puted for the FG and one for the BG. Because the distanceidmnstasymmetric, théocation of
the result is translated to the SouthEast, relativ& tdoy an amount equal to the distance function
itself. ThresholdingDgz7 With some value: generates the identical set as using blur dilation
withanr + 1 x r + 1 SE on BG and FG before the HMT.

This set of relations is illustrated in Fig. 6, which shows #equence of operations that gen-
erate BHMT distance metrics and BHMT images. We start withithageX and FG and BG
templates. Grid spacings of 2 inandy directions are used for generating the FG and BG tem-
plates. In the FG, the distance function is found_orand dilated with the FG template, giving
the FG directed distance metric. The dual process in the B@yihe BG directed distance met-
ric. The maximum of these gives the BHMT* metric, and for thi@mple it is possible to find
a threshold that yields a single match in the BHMT* set. Theeaesult can be derived using
the threshold individually on the FG and BG metrics, and AMD-+the result. With the threshold
chosen, it should be noted that the thresholded FG metridsyireatches in two locations, one of
which is between the template and the “g” in the image. Thighmaas not seen in the BG, which
removed it from the BHMT. Details of the BHMT* metric are show Fig. 7.

In the general case, one would choose different threshdlesgblur SES) in FG and BG, in
order to make the matching process more robust. This is fferehice between the BHMT and
the BHMT*. When an asymmetric distance function is used,clwhs analogous to the use of
different asymmetric SEs for FG and BG blur, the thresholaledry images, which have different
translations of the match with respect to the image, muséadigned before being AND-ed.
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Figure 7. Detail of BHMT* metric for example in Fig. 6

3 Efficientimplementations

Our interest is in finding relatively efficient implementats of the BHMT that are effective at
locating matches without a large number of false positivas. character recognition, for exam-
ple, the purpose is not to use the best possible pattern eratckuch as those used to estimate
probabilities for templates in a maximum likelihood cabtidn[7]. Instead, we might want in-
formation that is good enough to be used as a heuristic foowarg the search space for more
computationally-intensive methods that do a better joldehtifying characters. The rank opera-
tions, such as the rank BHMT, are less efficient than the BHMJalise they require two (integer)
convolutions by SEs, followed by thresholding. The BHMT ausealy boolean operations.

We now give two approaches to the efficient use of the BHMT dientifying text characters
in an image given a template.

3.1 Subsampled BHMT
To improve the efficiency in a direct implementation of theM8H it is possible to

e Scale down both image and templaiecause we match all template pixels at each image
position, the total number of pixels to be matched variehaddurth power of the scaling
parameter. The actual reduction in computation will be leetwthe second power and the
fourth power, depending on the implementation.

e Subsample the templat8uppose each template is subsampled by imposing a regidar g
with subsampling factors, andn,. This has two effects. First, it decreases the computation
required. The reduction varies from approximatejyto the product:, x n,, depending on
the implementation. The second effect is that the subsampéinds to reduce the overall
template dimensions, effectively augmenting the blur eithage.
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The template can also be subsampled by choosing a randomt fiitiemplate pixels, rather
than a rectangular grid, but for a given number of templatelpichosen, the matching is sig-
nificantly more accurate when a rectangular grid is chos@suRs using rectangular subsampled
gridding of the template are given in Sec. 4, where it will bersthat some choices of subsampling
greatly improve the results.

The first step is to perform the blur dilations on both the F@ B of the image. This can
then be used for a multiplicity of templates. The BHMT canto@lemented in several ways. For
fully parallel methods, each erosion can be formed sepdgrayethe usual set of translations and
ANDs, where the unit of operation can be anything from thepia the entire image. The BHMT
results by taking the intersection of the FG and BG results.

Matches of a template to a character in the image typicakkgeed at more than ore, y)
location. So that we do not over-count the matches, afteBHIT it is necessary to identify the
matches by labelling the 8-connected components in theenfagy the sparse BHMT images, this
is relatively fast compared to the BHMT itself.

3.2 Truncated BHMT

There is another implementation of the BHMT that is fastemewhat serialized, and largely
circumvents the labelling process itself. The idea is tmd¢aie the matching process in each
location at the first instance of failure. Each template caedmposed of an array of words, with
each word representing the pixels in a template row. SupipoiteFG and BG templates are to be
tested at some location (x,y). Choose the FG template agd i first row with the image to test
for a match. (The test requires only three boolean opemsitidND between template and image;
XOR between this result and the template; test for 0.) If a tmatch is found, proceed to the next
template row. Whenever a line match is not found, quit the@ss at (x,y) and move to the next
image location. If a full FG match is found, repeat with the @@ plate. If both matches succeed,
record the location (the labelling process).

Matches to a single image feature typically occur contiglypuwvithin some region that is
comparable to or smaller than the blur size. The serial aspeaxjuired to avoid recording multiple
positions for an image feature that has already been matdikedn a match occurs, move several
pixels away before looking for the next match. For the samasar, when scanning successive
image lines, it is useful to avoid regions where a match wasdoproximally on lines above.
Truncation of the matching process reduces the computttienby a factor proportional to the
number of lines in the FG and BG templates that have ON pixels.

The rank BHMT defined earlier in the paper can provide a finatrobover the matching. The
approach described in the previous paragraph also proaideficient implementation of the rank
BHMT. Rather than testing for zero, count the ON pixels intémaplate line that are OFF in the
image. Accumulate this sum over succesive template lingsaitmer the rank threshold for that
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template is exceeded or the full template is matched. Dddhisoth FG and BG, which generally
have different thresholds. As in the BHMT, avoid searchiagrhatches in the vicinity of any
location where a full match has already been found.

The efficiency of the truncated approach to the BHMT can bheesed within a factor of two or
so, depending on implementation details and the hardwaremBst locations of the template(s),
the match will fail on the first line, requiring about 10 mawhiinstructions (MIs). Suppose on
average that 20 Mis are required for edahy) location. A 400 MIPS machine can then match
20 million positions/second. For a document image wherevéngcal location of text baselines
is known within+2 pixels, and where the textline width is 2000 pixels, matciresrequired at
10,000 positions for each textline. For a full page with 54ltees, the matching time is about 25
milliseconds.

3.3 Use of truncated rank BHMT

The matching operation of the rank BHMT, performed in a tatad fashion and only on a small
subset of image locations, can be used to build an efficielbdEncoder for binary images.
JBIG2 is a lossy encoding where similarly-shaped connemtetponents are replaced by a single
representative template and a set of locations in the imdggenthis template is to appear. The
JBIG2 standard specifies the file format, but not the encoafiethod.

The basis of the JBIG2 encoder is an unsupervised clustprowgdure, including the shape-
matching algorithm. Consider a two-pass method, where rtiege is pre-segmented into 8-
connected components. In the first pass, each componeransid sequentially to determine
if it is sufficiently similar to the representative of an exig class, and if not, it becomes the rep-
resentative of a new class. The comparison is done usingheated version of the rank BHMT,
where both the template and the image component to be cothpaeeof comparable size. To
reduce computation, it is preferable to evaluate the matgistione relative location of template
and image. This location can be chosen by aligning the celstiaf the two images[10]. With
the rank BHMT, the FG and BG of the image are dilated and the {385 of each template of
similar dimensions are tested in a truncated way, as destibSec. 3.2. Two thresholds, for FG
and BG outliers, are set for each template. A template isidered to match an image component
if both the FG and BG outliers fall below their thresholdsmibre than one template matches an
image component, the one with the smallest number of oyilials (i.e., the best fit) should be
used.

Once the initial clustering is made, the instances withicheauster are combined, by again
aligning the centroids, to make a less noisy template. Ttesplates are then used for the second
pass. All image components are sequentially compared Wwiémew templates, and the best fit
is chosen. If an image component does not match any temftleédeysed as the template for a
new class, as in the first pass. The amount of image distopimauced by the substitution of
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the templates for each instance in the class, is controlfagtido blur size and the thresholds. The
advantage of the rank BHMT over the rank Hausdorff is eviéena the second pass, where the
template noise is much less than the noise in the image coenpgnAs we have seen previously,
small salt and pepper noise in the image components is raehimyvthe dilations, so the thresholds
can be set lower for rank BHMT than for rank Hausdorff.

4 lllustrative results for BHMT

In this section, the use of the BHMT for matching image chianaas briefly explored. A number
of parameters can be varied independently: the FG and BGoblifre image, the: andy grid
subsampling of the template, and scale reduction of botlyénaad template.

al |

Figure 8 Gridded FG templates, fon(, n,) varying from (1,1) in the upper-left
template to (5,5) in the lower-right template. Grid spacingincreases
to right; n,, increases downward.

To demonstrate the effect of blur and template gridding,restance of the character “a” is
chosen at random from the image at the top of Fig. 9, and isasoipled on a regular grid. A set
of 25 gridded FG templates is shown in Fig. 8, wheresthesubsampling increases to the right
(from 1 to 5), and the:, subsampling increases downward. There is another seti{oatg for
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but some also deal in stolen parts.

For retailers, the temptation to
deal in hot components can be
overwhelming. Typically, these
merchants must accept very low
profit margins, but they can make
huge profits on stolen merchan-
dise.

Police know little about how
the gray market works, but they
believe that many of these dealers
receive components stolen by em-
ployees of high-tech companies
that manufacture the parts. The
dealers also obtain parts from

gang members — working inde-

pendently or hired by shady firms
— who have been boldly robbing
computer stores to cash in on the
huge profits from stolen micro-
chips.

In Santa Clara County alone, $1
million in computer hardware is
lost to thieves every week, accord-
ing to San Jose police. But the rob-
bers are only a part of the prob-
lem. Thieves need a market to sell
the stolen parts, and they have no
trouble finding one.

“Stolen parts move with tre-
mendous speed,” said prosecutor

Frank Berry with the Santa Clara
County district attorney’s high-
tech crime unit. “You can package
this stuff and have it be gone in a
matter of hours.”

At the top of the shopping list
for most high-tech thieves is the
Intel 486 microchip, a powerful
component used as the brains of
many personal computers. These
chips are about the size of a thumb-
nail, and a large number of them
can be stored in a small space. Fur-
thermore, they are not stamped
with serial numbers by manufac-
turers, so they cannot be traced.
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Figure @ Top: Example image. Bottom: characters matched by the BHMT f
the templates in Fig. 8 (and the BG templates as well) hava hagh-

lighted.
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Blur 2,2 Blur 3,3 Blur 4,4 Blur 2,4 Blur 2,5 Blur 4,2
ng | ny | nmiss| nfp | nmiss| nfp | nmiss| nfp || nmiss| nfp | Nmiss| nfs | nmiss| nfp
1)1 84 0 19 0 4 0 8 0 4 0 83 0
1|2 80 0 10 0 0 32 1 0 1 0 77 0
1] 3 71 0 16 0 4 0 6 0 2 0 68 0
1|4 65 0 16 0 4 1 4 0 0 0 64 0
2|1 80 0 5 0 0 1 0 0 0 0 79 0
2|2 70 0 1 1 0 74 0 0 0 0 69 0
2|3 54 0 4 0 0 11 0 0 0 0 53 0
2 | 4 46 0 4 0 0 54 0 0 0 0 46 0
3|11 65 0 1 0 0 15 3 0 3 0 61 0
312 47 0 0 0 2 130 0 0 0 0 43 0
313 55 0 0 1 0 150 0 0 0 5 51 0
3| 4 14 0 0 31 13 | 328 0 0 0 33| 14 | 16
4 11 39 0 0 0 - - 4 0 4 0 34 0
4 | 2 0 0 0 32 - - 0 0 0 3 0 168
4 1 3 16 0 0 21 - - 1 0 1 6 9 100
4 | 4 1 0 6 193 - - 0 0 1 45| 11 | 609

Table T Use of BHMT to identify 88 instances of the character “a”,nga tem-
plated derived by subsampling one of those instances. Kbiotehis
size and thickness, the most stable region for matches liswith pa-
rameters near FG and BG blu(g;, 5,) = (2, 4) and and grid spacings
(nz,ny) = (2,2). For each set of FG/BG blurs, the numbers of misses
and false positives are given for different grid spacings.

the BG templates. In the upper image in Fig. 9, there are 88noss of the character “a”. These
are highlighted in the bottom image, having been identified BHMT using the blur parameters
(By, By) = (2,4) and grid spacing&,, n,) = (2, 2). With this combination, as with several others,
all instances were identified and no false positives weradou

Results for five combinations of FG/BG blur factors and sxitgrid subsamplings are shownin
Table 1. For each blur factor pair, the numbers of missesalsd positives are given. For example,
the two columns labeled “Blur2,4” usdd;, 5,) = (2, 4). With strict matching parameters (fine
gridding, small dilation) there are no false positives astaificant number of misses. A few false
positives are seen for Blur3,3, particularly for larger With Blur4,4, the number of false positives
is significantly increased; this amount of dilation rematresdifferentiation of the “a’s from other
similar characters. A few intermediate combinations seded in finding all occurrences without
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any false positives. As seen from Table 1, the optimal waykiegion is near the parameters
(ﬁf’ Bb) = (2’ 4) and(nxa ny) = (27 2)'

When FG and BG blur are not equal, there is an asymmetry indbelts. Table 1 shows
particular combinations, where the BG blur is larger tham B& blur, that give good matches.
When FG blur is larger, as for Blur4,2, there are typicallyrenmisses and more false positives.
The asymmetry exists because the image has large solid aneiés that can give false positive
matches to all BG templates; consequently, excessive EBatilcontributes significantly to these
errors.

When matching multiple characters in a font and size, amuapti pair of FG and BG blur SEs
can be chosen, and the template grid spacings can be indilicdaptimized for each character,
including use of different grid spacings for FG and BG tertgga The BHMT exhibits significant
immunity to random noise. For example, when random noisbeabhe percent level shown in
(b) of Fig. 2 is added to the image, the numbers of missed dad fmsitive characters from the
BHMT are not significantly changed. The BHMT is typically rearomputationally efficient with
coarser grid spacing, particularly in the y-direction.

S5 Summary

Translationally invariant methods for pattern matching@anned document images have no de-
pendencies on pixel connectedness in either the image @iagm We have focused on the most
efficient techniques, that require only boolean operatidriee basic operation, the HMT (which
should be called the H&nd-Miss transform!), is maximally sensitive to noisedathFG and BG.

Fortunately, there are ways to increase the noise immuhttyedHMT. For extensions that use
only boolean operations (as opposed to linear convolutiahrank order filters), and considering
the nature of binary pixel noise in both images and templateshave argued that the BHMT is
the best choice.

Considerable attention was devoted to distance metritcs#imabe derived from (special cases
of) the BHMT. We began with the well-known relation betweba Hausdorff metric and blurred
template matches, and derived similar metrics for the BHMs distance provides a measure of
the goodness of fit of the template at every location in theggn&omparing the Hausdorff and
BHMT mechanisms of action on noisy document images, we sdawe (1) the bi-directional
symmetry of Hausdorff is problematic and (2) the uni-dil@tal but FG/BG-symmetric BHMT
provides immunity to both boundary and random pixel noise. ifuitive presentation of these
differences is a primary goal of this paper.

We also showed how the BHMT* metric can be derived in the gralgsregime starting with
distance functions for the FG and BG image. For most seitgjtiwe choose an 8-connected
asymmetric function that is generated in one raster scamn@neiments the distance to the South
and East. These distance functions are then dilated witk@and BG templates, and combined
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using the pixelwise Max operator.

The BHMT is useful for binary document image pattern matgtiasks. We have shown the
results of an experiment on pattern matching for characterglustrate the effects of FG and
BG blur, and of regular subsamplings of the templates. Regridding of the templates gives
far better results than using random subsets, for the saméerof elements chosen. We also
discussed methods for truncating the matches; this is muek gfficient than using full erosions
at every location. These truncation methods are also agtpédo rank operations, which can be
designed to have fewer matching failures than the BHMTfitsel
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